
T3. Frequency measurements with ring resonators

A1 What are the coefficients C1 and C2?

They are equal to 0 because the field cannot tend to infinity at a large distance from the fiber.

C1 = 0

C2 = 0

A2 Express kin and kout in terms of ε, ω, β and speed of light in vacuum c = 1/
√
ε0µ0, using the wave equation.

Substituting solution type into the wave equation:

∂2A

∂x2
+

∂2A

∂y2
+ (ω2ε/c2 − β2)A = 0

Considering that ∂2A
∂x2 ≪ ∂2A

∂y2 , we get:

kin =

√
ω2ε(ω)

c2
− β2

kout =

√
β2 − ω2

c2

A3 Prove that the tangential components of the electric field strength are equal on both sides of the interface (as in
electrostatics).

We can write Faraday’s law of electromagnetic induction for a rectangular circuit with vertices at points
(a/2 − δa, y, z), (a/2 − δa, y, z + ∆z), (a/2 + δa, y, z), (a/2 + δa, y, z).At δa → 0, the derivative of the magnetic
field flux tends to 0, and the magnitude of the circulation of the electric field strength remains constant. From
this we can conclude that it is also equal to 0. At δa → 0 the circulation can be expressed asΓ = (Eτ1−Eτ2)∆z = 0,
hence Eτ1 = Eτ2.

A4 Write the boundary conditions for the tangential component of the electric field. ExpressB in terms of a, kin, kout.

B = exp(kouta/2) cos(kina/2)

A5 Prove that the tangential components of the magnetic field strength are equal on both sides of the interface (as
in magnetostatics).

The proof is similar to A3, but instead of the law of electromagnetic induction, the circulation theorem for the
magnetic field strength is used.

A6 Prove that

Hz = E0 Re
( i

µ0ω

∂A

∂x
exp(i(ωt− βz))

)
.

Using the differential form of Faraday law we get:

−µ0
∂Hz

∂t
=

∂Ey

∂x

The derivative ofHz with respect to time can be expressed as:

∂Hz

∂t
= iωHz

Hz = E0 Re
( i

µ0ω

∂A

∂x
exp(iωt− iβz)

)
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A7 Write the boundary conditions for the tangential component of themagnetic field H⃗. The answer can be expressed
in terms of kin, kout, a.

To findHz, differentiate A by x:

∂A

∂x
= −kin sin(kinx), |x| < a/2

∂A

∂x
= −kout exp(kout(−a/2 + x)) cos(kina/2), |x| > a/2

EquatingHz on both sides of the interface:

tan(kina/2) =
kout
kin

A8 Substitute the values kin, kout, obtained in A2 into the equation from A7. Obtain an equation from which βcan be
determined (this equation is solved numerically only). The equation can include β, ω, ε, c, a.

tan

(
a

2

√
ω2ε(ω)

c2
− β2

)
=

√
β2c2 − ω2

ω2ε(ω)− β2c2

B1 Assuming that there is no energy loss in the divider, find the relationship between rs and ts.

r2s + t2s = 1

B2 Express the field amplitude at the input to Q1 of the splitter Bin(t) in terms of κ and the field amplitude at the
output of Q2 at time (t− τ(ω))— Bout(t− τ(ω)).

Bin(t) = κBout(t− τ(ω))

B3 Using the stationarity conditions, express Bin(t) in terms of Bout(t), κ, ω, τ .

Let the φ be:

φ = −ωτ

Then

Bout(t) = itsAin(t)− rsBin(t)

Bin(t) = κeiφBout(t)

Bin(t) = κe−iωτBout(t)

B4 Express Bin(t) in terms of A0, rs, ts, κ, ω, τ and t, using the result of the previous task.

Bin(t) = κeiφ(itsAin(t)− rsBin(t))

Bin(t) =
itsκe

iφAin(t)

1 + rsκeiφ

Bin(t) =
itsκe

−iωτA0e
iωt

1 + rsκe−iωτ
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B5 What is the power N2, leaving the channel P2? Express the answer in terms of ωτ(ω), κ, rs and the power N1 in
channel P1.

Aout(t) = −rsAin(t) + itsBin(t) = −Ain(t)
(
rs +

t2sκe
iφ

1 + rsκeiφ

)
Let us reduce the right-hand expression to a common denominator and divide the square of the numerator

modulus by the square of the denominator modulus:

η =
N2

N1
=

κ2 sin2(ωτ) + (rs + κ cos(ωτ))2

κ2r2s sin
2(ωτ) + (1 + rsκ cos(ωτ))2

B6 Sketch a qualitative plot of N2/N1(ωτ) for fiber resonator with the following parameters:

• κ = 1− 5 · 10−3;

• ts = 0.1.

At what values of ωτ is the ratio N2/N1 minimal?

ωresτ = π(1 + 2n)

B7 Find the sharpness Q of the absorption peak with number n = 100.
Sharpness is the ratio of the peak frequency to the width of the region of frequencies for which the transmission dip is
not less than half of the maximum dip of a particular peak.

Let us find the depth of the absorption peak by expanding the expression for the power ratio into a Taylor series:

η(ωres) ≈
(1− κ− t2/2)2

(1− κ+ t2/2)2
≈ 0

∆ηmax = 1− η(ωres) ≈ 1

Or by substituting the value φ from the previous paragraph, without putting it in a row:

η(ωres) ≈ 1.6 · 10−6 ≈ 0

∆ηmax ≈ 1

Sharpness is the ratio of ω to the width of the region in which∆η > ∆ηmax/2. Let’s estimate the width of this
area:

φ = δ + π(1 + 2n), δ ≪ π

Let us expand the Maclaurin series in terms of δ:
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η ≈ δ2 + (1− κ− t2/2 + δ2/2)2

δ2 + (1− κ+ t2/2 + δ2/2)2
≈ δ2

δ2 + (1− κ+ t2/2)2
=

1

2

From here we get:

δ ≈ 1− κ+ t2/2 ≈ 0.01

Q =
ωres

∆ω
=

π(1 + 2n)

2δ
≈ πn

1− κ+ t2/2
= π · 104 = 3.14 · 104

C1 Sketch a qualitative plot of the oscilloscope readings if it is known for sure that the frequency of the tunable
laser reaches exactly one of the frequencies given in B6 (these are the frequencies where the FR transmittance is
minimal).

C2 Draw what the oscilloscope will show when Ω ≈ 220MHz. Note that α ≪ Ωω0.

The field amplitude at the exit from the EOM will be equal to

EEOM (t) = f(t) cos(ω(t)t) = β cos(ωt) +
1− β

2

(
cos(Ω + ω)t+ cos(−Ω+ ω)t

)
where ω = ω(t) = ω0+αt. In this case, three waves fall on the FR, the frequencies of which are shifted relative

to each other by exactly Ω. Therefore, the number of absorption peaks will now triple: they can be observed at
frequencies ωres, ωres+Ω, ωres−Ω, where ωres is frequency corresponding to the minimum transmission (defined
in B6).

Solution: page 4 of 6



C3 Estimate with what relative accuracy can the period ωMZI be measured on this setup if the maximum signal
frequency of the high-frequency oscillator is Ωmax = 1250MHz?

We can measure one period by changing Ω in a way, so that the absorption maxima were separated by ωmax from
each other. Then the absolute error would be of order ω0/Q = 24MHz, and relative ω0/(QΩmax) = 0.02

D1 Express the group velocity vg in terms of β1.

vg = 1/β1

D2 Let us find the form of the soliton. The solution of NLSE can be found in the form:

F (z, s) =
F0 exp(iσz)

cosh(θs)
.

Experess F0 и σ in terms of θ, β1, β2 и γ.

Let’s calculate the derivatives and substitute them into the equation (reducing by iF0 exp(iσz)):

σ

cosh θs
+

β2θ
2

2β2
1

(
− 2

cosh3 θs
+

1

cosh θs

)
=

γF 2
0

cosh3 θs

From here we get:

F 2
0 = −β2θ

2

γβ2
1

σ = −β2θ
2

2β2
1

D3 Express D1 and D2 in terms of β1, β2 and loop length L. Hint: the BP natural frequency criterion: Bin(t) and
Bin(t− τ(ωµ)) have the same phase.

Using the result of point B3, we get:

β(ω(µ))L+ π = 2π(µ+ µ0)

Now let’s substitute the expression for β(ω), and into it ω(µ). We get:(
β0 + β1(D1µ+

D2µ
2

2
) +

β2D
2
1µ

2

2

)
L ≈ 2π(µ+ µ0 + 1/2)

Equating the coefficients of µ and µ2 on the right and left sides:

D1 =
2π

β1L

D2 = −β2D
2
1

β1
= −4π2β2

β3
1L

2

D4 Let the resonator be made of a material with χ > 0. At whatD2 can solitons exist in it?

F 2
0 > 0 so β2 < 0 andD2 > 0

D2 > 0

D5 Let a soliton with carrier frequency ω0. circulates in the FR described in D3. The external laser does not work.
Plot the emission spectrum of the resonator (the dependence of specific power on frequency) qualitatively in the
frequency range (ω0 − 20D1, ω0 + 20D1). Consider that ω0/Q(ω0) ≪ D1. (Remember thatQ -is sharpness defined
in B7)

Spectrum consists of narrow bands corresponding to the natural frequencies of the FR as shown on the figure.
The envelope can be fitted by F1/ cosh

2(F2(ω − ω0)) (here F1, F2 are some constants depending on F0, σ, θ), but
analytical expression for envelope form is not required.
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D6 Estimate the absolute error of the angular frequency measurement ω using the spectrum from item D5.

We get a ruler with a pitch ofD1, and the absolute error is about a half of this pitch –D1/2.

∆ω ≈ D1

2

D7 Express the round-trip time τs throughD1.

τs =
2π

D1
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