
T3. Frequency measurements with ring resonators
This task deals with methods for high-precision frequency measurements. During the solution, you will learn

two measurement methods: signal modulation (part C) and frequency comb (partD).
Why do you need more precision?

• The accuracy of physical measurements is important when we determine the values of fundamental
constants. Many times in the history of physics, small discrepancies between experimental results and
theory have required revision of the entire theoretical model and led to major discoveries in fundamental
physics.

• High accuracy of frequency measurement is necessary for normal operation of satellite communication
systems, navigation, ground-based telecommunication systems, etc.

In the framework of classical physics, any measurement is a comparison with a standard. As a frequency standard
we will use the natural frequencies of a ring optical resonator, because today the best resonators are ring
resonators. And the higher the goodness, themore accurate is the value of the reference natural frequency. In Part
B, youwill learnmore about ring resonators with the example of a ring fiber optical resonator. In Part A, youwill
derive the theory of wave propagation in the optical fiber fromwhich the resonator described in Part B is made. At
the very end of the problem there are reference materials: Maxwell’s equations and differential operators. If you
know all the physical laws that are included in the Olympiad program, you will not need reference materials to
solve the problem.

Equations of EM wave propagation The electromagnetic field at each point of space is described by four
vectors: E⃗(r⃗, t), H⃗(r⃗, t), D⃗(r⃗, t), B⃗(r⃗, t) — electric field strength, magnetic field strength, electric induction and
magnetic induction. These vectors are related to the P⃗ and magnetisation M⃗ of the medium by realations:

D⃗ = ε0E⃗ + P⃗ ,

B⃗ = µ0(H⃗ + M⃗),

where ε0 is the electric constant and µ0 is the magnetic constant.
Use following approximations when solving the problem:

• All media are non-magnetic and M⃗ = 0.

• There are no free charges.

• The response of the medium is instantaneous and local, that is, P⃗ (r⃗, t) depends only on E⃗(r⃗, t).

EM wave theoey. By applying the rot operator to Maxwell’s equations, Faraday’s induction law in differential
form and the theorem on the circulation ofmagnetic field strength in differential form (see References), we obtain
the basic equations of electromagnetic wave propagation:

∆E⃗ = µ0

∂2D⃗

∂t2
.

∆H⃗ = ε0
∂2B⃗

∂t2
.

Part A. Field profile in fiber optics (2.5 points)
In parts A,B,C, we will assume that the polarization depends linearly on the electric field strength:
P⃗ = ε0(ε(ω)−1)E⃗, where ε(ω) is the dielectric permittivity of themedium,which usually depends on the frequency
of the electromagnetic wave in the medium. Dielectric permittivity of vacuum is equal to 1.

So, the equations of propagation of electromagnetic waves can be written in this form:

∆E⃗ = µ0εε0
∂2E⃗

∂t2
.

∆H⃗ = µ0εε0
∂2H⃗

∂t2
.
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A plane monochromatic electromagnetic wave of frequency ω propagates along a dielectric waveguide along the
z-axis (fig. 1), which is a rectangular parallelepiped of material with dielectric constant ε(ω)with sides a, L1 и L2.
L1, L2 → ∞ and are much more than any characteristic lengths in this problem.

Let’s introduce the Cartesian coordinate systemOxyz.O сcoincides with the center of the parallelepiped. The
edges of length L1 are parallel to z-axis, length a – to x-axis, length L2 – to y-axis. (x̂, ŷ, ẑ) is a right triple.

Consider a wave polarized parallel to the y-axis: E⃗||ŷ. We will look for the solution for the field E⃗ in the
waveguide in the following form:

E⃗(r⃗, t) = E0 Re
(
A(x, y) exp(iωt− iβz)

)
ŷ,

whereE0 has the dimensionality of the electric field, andA(x, y) is a dimensionless complex quantity that contains
information about the ratio of amplitudes and phase differences of the field at different points of the waveguide.
Without restriction of generality A(0, 0) = 1.

Let us also consider that L2 ≫ a, so it will be assumed that ∂A/∂y ≪ ∂A/∂x, and hence A is only dependent
on x.

The solution for A(x) can be sought in the form:

A(x) =


cos(kinx) при |x| < a/2

C1 exp(koutx) +B exp(−koutx) при x > a/2

B exp(koutx) + C2 exp(−koutx) при x < −a/2

where kin > 0, kout > 0.

A1 What are the coefficients C1 and C2? 0.3

A2 Express kin and kout in terms of ε, ω, β and speed of light in vacuum c = 1/
√
ε0µ0, using the wave equation. 0.5

TofindB, we need towrite down the boundary conditions for the boundaryx = a/2 (for the boundaryx = −a/2
we get the same equations because A(x) is an even function).

A3 Prove that the tangential components of the electric field strength are equal on both sides of the interface (as in
electrostatics).

0.3

A4 Write the boundary conditions for the tangential component of the electric field. ExpressB in terms of a, kin, kout. 0.3

Nowwe need to derive an equation for finding β(ω). For this purpose we can write another boundary condition
– for H⃗.

A5 Prove that the tangential components of the magnetic field strength are equal on both sides of the interface (as
in magnetostatics).

0.3
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A6 Prove that

Hz = E0 Re
( i

µ0ω

∂A

∂x
exp(i(ωt− βz))

)
.

0.3

A7 Write the boundary conditions for the tangential component of themagnetic field H⃗. The answer can be expressed
in terms of kin, kout, a.

0.3

A8 Substitute the values kin, kout, obtained in A2 into the equation from A7. Obtain an equation from which βcan be
determined (this equation is solved numerically only). The equation can include β, ω, ε, c, a.

0.2

Part B. Fiber resonator transmittance (3.0 points)

Ain(t) Aout(t)

Bout(t)

Splitter

The radiation from the external laser enters a quadrupole beam splitter, which is an optical system with two
pairs of coupled channels: (P1, P2) and (Q1, Q2).

Amonochromatic wave with complex amplitudeAin(t) entering the splitter is split into two outgoing waves of
smaller amplitude propagating in the same direction. The first of them propagates along the same pair channel as
the incoming wave, and its complex amplitude is Aout(t) = −rsAin(t). The second wave propagates through the
channel of the other pair and its amplitude is Bout(t) = itsAin(t).Waves incident on Q1 are divided simillary
for those incident on P1. Consider that rs and ts are real positive numbers and ts ≪ 1.

B1 Assuming that there is no energy loss in the divider, find the relationship between rs and ts. 0.2

Afiber resonator can be assembledwith the divider. In order to do so, it is necessary to connect the channelsQ1

andQ2 with a loop of single-mode fiber (the equation for β(ω) has the only solution for the frequencies considered
in this part) of length L. The time for light of frequency ω to travel through the loop is τ(ω). Also note that due
to material absorption, the amplitude of the wave in the loop decreases by a factor 1/κ for each round in the loop
(1− κ ≪ 1). For all tasks in parts B and C neglect backscattering.

Ain(t) Aout(t)

Bout(t)Bin(t)

Splitter

P1

Q1

P2

Q2

Let a monochromatic wave Ain(t) = A0e
iωt from an external laser be incident on the input of channel P1.

B2 Express the field amplitude at the input to Q1 of the splitter Bin(t) in terms of κ and the field amplitude at the
output of Q2 at time (t− τ(ω))— Bout(t− τ(ω)).

0.3

Assume the system has come to the steady-state regime, i.e. the absolute values of complex field amplitudes
at any point are constant, and the phase difference of the field at two points does not change with time. Then for
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any amplitude Ei (instead of Ei we can substitute Ain, Aout, Bin, Bout) the expressions are valid:

Ei(t− t′) = e−iωt′Ei(t).

B3 Using the stationarity conditions, express Bin(t) in terms of Bout(t), κ, ω, τ . 0.3

B4 Express Bin(t) in terms of A0, rs, ts, κ, ω, τ and t, using the result of the previous task. 0.5

B5 What is the power N2, leaving the channel P2? Express the answer in terms of ωτ(ω), κ, rs and the power N1 in
channel P1.

0.5

B6 Sketch a qualitative plot of N2/N1(ωτ) for fiber resonator with the following parameters:

• κ = 1− 5 · 10−3;

• ts = 0.1.

At what values of ωτ is the ratio N2/N1 minimal?

0.6

B7 Find the sharpness Q of the absorption peak with number n = 100.
Sharpness is the ratio of the peak frequency to the width of the region of frequencies for which the transmission dip is
not less than half of the maximum dip of a particular peak.

0.6

Today it is possible to create a fiber resonator based on a beam splitter with peak sharpness of about 5 ·107 near
the frequency corresponding to the wavelength of 1550 nm. And if we use a ring microresonator made of fused
quartz, we can obtain a sharpness of 109. Resonators with such small losses open us a wide range of possibilities
for accurate frequency measurements.

That is, with a quartz microresonator we can obtain a spectral line with an average wavelength of 1550 nm
with a width of only 0.000002 nm!

Part C. Calibration of the Mach-Zehnder Interferometer (2.0 points)
Consider the setup for calibrating the interferometer shown in Fig.1 Now the laser frequency varies smoothly
with time (the derivative ωτ is much smaller than the inverse time for establishing the stationary mode in the
resonator), and its power is constant.

ω(t) = ω0 + αt

The radiation flux from the laser is split into two arms by another beam splitter similar to the splitter in part B.
The first arm of the optical circuit contains a Mach-Zehnder calibrated interferometer and a photodetector that
measures the power coming out of it, and the second arm contains a resonator and a similar photodetector. The
signals from the photodetectors are fed to an oscilloscope. The signal of the photodetector is proportional to
the radiation power. The oscilloscope shows the time dependence of the photodetector voltages (not XY
mode!).

Laser

EOMHF Gen.

MZI

FR

PD

PD

?

OSC
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Laser parameters:

• ω0 = 1.26 · 1015 с−1

• α = 5 · 109 с−2

Resonator parameters:

• Sharpness of absorption peaks near ω0 is 5 · 107

• Consider that τ(ω) independent of frequency and equal to τ0 = 3 · 10−11 с

• κ = 1− 1 · 10−3

• ts = 0.1

Parameters of the interferometer to be calibrated:

• Its power throughput capacity is approx

FMZI(ω) = cos2(ω/2ωMZI)

• ωMZI ≈ 1250MHz. The exact value will be determined at this setup.

C1 Sketch a qualitative plot of the oscilloscope readings if it is known for sure that the frequency of the tunable
laser reaches exactly one of the frequencies given in B6 (these are the frequencies where the FR transmittance is
minimal).

0.5

Now an amplitude electro-optic modulator is connected to the second arm. Its amplitude bandwidth is
independent of the radiation wavelength and is equal to:

fEOM (t) = β + (1− β) cos(Ωt)

Ω ≪ ω0

β < 1

C2 Draw what the oscilloscope will show when Ω ≈ 220MHz. Note that α ≪ Ωω0. 1.0

C3 Estimate with what relative accuracy can the period ωMZI be measured on this setup if the maximum signal
frequency of the high-frequency oscillator is Ωmax = 1250MHz?

0.5

Part D. Cubic nonlinearity and solitons (2.5 points)
For precision measurements and high-frequency communication, it is necessary to obtain very short light pulses
that do not change their profile with time (such pulses are called solitons). This is not possible in linear optics
because the dielectric constant and the dispersion constant depend on frequency, and the pulses do "blur"due to
dispersion.

Fortunately, the approximations of linear optics do not work for all materials, and the resulting nonlinearities
can compensate for the undesirable effects associated with dispersion.

In Part D, we will assume that the projection Pi(r⃗, t) of the polarisation vector on an arbitrary axis i depends
on the projection of the electric field strength Ei(r⃗, t) at the same point at that instant of time as follows:

Pi(r⃗, t) = ε0((ε(ω)− 1)Ei(r⃗, t) + χE3
i (r⃗, t))

The pulse is a sum of electromagnetic waves with frequencies very close to the carrier frequency (ω ≈ ω0), and
propagation constants very close to the propagation constant of the carrier wave β ≈ β0 = β(ω0):

E⃗(r⃗, t) = Re
(
E0F (z, t)A(x, y) exp(iω0t− iβ0z)

)
ŷ,

Here β(ω) is the spreading constant found in part A, A(x, y) is also taken from part A, F (z, t) is a complex
function that contains information about the momentum profile.

The function β(ω) can be approximated by a quadratic function:

β = β0 + β1(ω − ω0) + β2(ω − ω0)
2/2
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We can substitute this type of solution into the wave equation, which was derived in the introduction, and by
mathematical transformations beyond the school program, obtain the equation for F (z, t);

∂F

∂z
+ β1

∂F

∂t
+

iβ2

2

∂2F

∂t2
− iγ|F |2F = 0

The pulse will propagate with group velocity, so it is reasonable to move to a frame of reference that will also
move with group velocity. In this system the last equation will be rewritten in the form:

∂F

∂z
+

iβ2

2β2
1

∂2F

∂s2
= iγ|F |2F,

where s = t/β1 − z – is the spatial coordinate in the soliton reference frame, and γ is the cubic nonlinearity
coefficient, which is proportional to χ (и имеет тот же знак). The resulting equation is called the Nonlinear
Schrödinger equation (hereafter referred to as the NLSE). In the Part D assignment, you will analyze the NLSE.
You will need to express all answers through its coefficients.

D1 Express the group velocity vg through β1. 0.1

D2 Let us find the form of the soliton. The solution of NLSE can be found in the form:

F (z, s) =
F0 exp(iσz)

cosh(θs)
.

Experess F0 и σ in terms of θ, β1, β2 и γ.

0.6

Let one of the natural frequencies of FR be ω0. The length of FR is such that there are many other natural
frequencies in the range from 0 to ω0 находится очень много других собственных частот. Then the following
equality is true for the other natural frequencies: ωµ ≈ ω0+D1µ+D2µ

2/2, where µ is integer and ω0 ≫ D1 ≫ D2.

D3 Express D1 and D2 in terms of β1, β2 and loop length L. Hint: the BP natural frequency criterion: Bin(t) and
Bin(t− τ(ωµ)) have the same phase.

0.5

D4 Let the resonator be made of a material with χ > 0. At whatD2 can solitons exist in it? 0.3

D5 Let a soliton with carrier frequency ω0. circulates in the FR described in D3. The external laser does not work.
Plot the emission spectrum of the resonator (the dependence of specific power on frequency) qualitatively in the
frequency range (ω0 − 20D1, ω0 + 20D1). Consider that ω0/Q(ω0) ≪ D1. (Remember thatQ -is sharpness defined
in B7)

0.6

D6 Estimate the absolute error of the angular frequency measurement ω using the spectrum from item D5. 0.2

D7 Express the round-trip time τs throughD1. 0.2
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Reference materials
Let us introduce a Cartesian coordinate systemOxyz. in space. The unit vectors along the corresponding axes are
x̂, ŷ, ẑ and form the right triple.

• The grad operator converts a scalar φ into a vector as follows:

gradφ = x̂
∂φ

∂x
+ ŷ

∂φ

∂y
+ ẑ

∂φ

∂z

• The div operator converts vector a⃗ = axx̂+ ay ŷ + az ẑ into a scalar as follows:

div a⃗ =
∂ax
∂x

+
∂ay
∂y

+
∂az
∂z

• The rot operator converts vector a⃗ = axx̂+ ay ŷ + az ẑ into a vector as follows:

rot a⃗ = x̂
(∂az
∂y

− ∂ay
∂z

)
+ ŷ

(∂ax
∂z

− ∂az
∂x

)
+ ẑ

(∂ay
∂x

− ∂ax
∂y

)

• The Laplace operator∆ converts a scalar to a scalar or a vector to a vector:

∆φ =
∂2φ

∂x2
+

∂2φ

∂y2
+

∂2φ

∂z2

∆a⃗ =
∂2a⃗

∂x2
+

∂2a⃗

∂y2
+

∂2a⃗

∂z2

• If we apply rot twice to the vector a⃗ we get the vector:

rot rot a⃗ = grad div a⃗−∆a⃗.

Maxwell’s equations
Each equation is written first in integral form and then in differential form:

• Gauss’s theorem for magnetic field induction (the flux of magnetic induction through any closed surface is
0): ∮

S

(B⃗ · dS⃗) = 0

div B⃗ = 0

• Gauss’ theorem for electric induction (the flux of electric induction through a closed surface is equal to the
free charge inside the volume bounded by it):∮

S

(D⃗ · dS⃗) = qf =

∮
V

ρfdV

div D⃗ = ρf

here ρf is the bulk density of free charges.

• Faraday’s law of electromagnetic induction (the rate of change of the flux of magnetic induction through
an unclosed surface, taken with the opposite sign, is equal to the circulation of the electric field on a closed
loop, which is the boundary of the surface):∮

l

(E⃗ · d⃗l) = − ∂

∂t

∮
S

(B⃗ · dS⃗)

rot E⃗ = −∂B⃗

∂t
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• Circulation theorem for the magnetic field strength (the sum of the rate of change of the electric induction
flux through an unclosed surface and the total electric current of free charges through it is equal to the
magnetic field circulation on a closed contour, which is the boundary of the surface):∮

l

(H⃗ · d⃗l) = If +
∂

∂t

∮
S

(D⃗ · dS⃗)

rot H⃗ =
∂D⃗

∂t
+ j⃗f
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