Все статьи

Подкатегории

Новости

488 статей

О Физтехе

1 подкатегорий

2 статей

Московский политех

2 подкатегорий

1 статей

Разное

16 статей

Статьи , страница 371

  • 1.1 Типы химических реакций
    Просмотр текста ограничен правами статьи
  • 1.2 Гомогенные и гетерогенные реакции
    Просмотр текста ограничен правами статьи
  • 1.3 Работа и теплота
    Просмотр текста ограничен правами статьи
  • 1.4 Энергия Гиббса (изобарно-изотермический потенциал)
    Просмотр текста ограничен правами статьи
  • 2.1 Химическая кинетика
    Просмотр текста ограничен правами статьи
  • 2.2 Классификация сложных реакций
    Просмотр текста ограничен правами статьи
  • 2.3 Зависимость скорости химической реакции от различных факторов
    Просмотр текста ограничен правами статьи
  • 2.4 Влияние температуры на скорость реакции
    Просмотр текста ограничен правами статьи
  • 2.5 Понятие о катализе
    Просмотр текста ограничен правами статьи
  • 2.6 Обратимые реакции. Химическое равновесие
    Просмотр текста ограничен правами статьи
  • Примеры решения задач
    Просмотр текста ограничен правами статьи
  • 1.2 Электронное строение атома

    Элементарные частицы, составляющие атом, имеют очень малые массы и размеры и потому обладают специфическими свойствами, отличающими их от объектов окружающего нас макромира. В микромире перестают действовать некоторые законы классической физики, поэтому поведение электронов в атоме, как и других элементарных частиц, описывается квантовой механикой.

    С позиций квантовой механики нельзя говорить о какой-либо определённой траектории движения электрона – можно лишь судить о той или иной степени вероятности его нахождения в данной точке пространства.

    Пространство вокруг ядра, в котором наиболее вероятно нахождение электрона, называется орбиталью. Вероятность обнаружения электрона внутри орбитали составляет `90%`.

    В связи с этим электрон представляют не в виде материальной точки, а как бы "размазанным" по всему объёму атома в виде так называемого электронного облака, имеющего области сгущения и разрежения электри-ческого заряда.

    Нахождению электрона на орбитали соответствует минимальная энергия электрона, т. е. его наиболее устойчивое состояние. Чем ближе орбиталь находится к ядру, тем взаимодействие между ядром и электроном, находящимся на данной орбитали сильнее, и энергия электрона ниже.

    Те орбитали, на которых находятся электроны с одинаковой энергией, имеют одинаковую форму, называются вырожденными и формируют единый энергетический подуровень.

    В свою очередь близкие по энергии подуровни формируют единый энергетический уровень.

    Вывод

    Таким образом, можно сделать вывод, что электронная оболочка атома состоит из уровней, которые в свою очередь состоят из подуровней, на которых расположены электронные орбитали, а важнейшей характеристикой электрона является его энергия, величина которой зависит от его удаленности от ядра.

  • 1.3 Квантовые числа

    Для описания положения электрона в электронной оболочке используют четыре квантовых числа. Здесь мы не будем углубляться в квантово-механические подробности и опишем только утилитарный смысл данных чисел. Набор, состоящий из четырёх квантовых чисел - это «адрес» электрона в электронной оболочке.

    Главное квантовое число `n` - определяет полную энергию электрона на энергетическом уровне и показывает, из скольких энергетических уровней состоит электронная оболочка атома. Принимает целочисленные положительные значения от `1` до `oo`. В периодической таблице Д. И. Менделеева `n` равно номеру периода.

    Орбитальное квантовое число `l` показывает, сколько энергетических подуровней составляют данный уровень и характеризует форму орбиталей. Принимает значения от `0` до `(n-1)`.


    наПример

    При `n=1`, `l` принимает только одно значение `0` (этому числовому значению соответствует буквенное `s`), следовательно, на первом энергетическом уровне только один подуровень - `s`. Орбиталь `s`-подуровня имеет сферическую форму (рис. 1).

    При `n=2`, `l` принимает два значения: `0` `(s)` и `1` `(p)`. Энергетический уровень состоит из двух подуровней - `s` и `p`. Форма `p`-орбитали похожа на объёмную восьмёрку (рис. 1).

    При `n=3`, `l` принимает уже три значения: `0` `(s)`; `1` `(p)` и `2` `(d)`. Таким образом, на третьем уровне три подуровня. Орбитали `d`-подуровня имеют форму двух перекрещённых  объёмных восьмёрок либо объёмной  восьмерки с перемычкой (рис. 1).

    При `n=4`, значений `l` уже четыре, следовательно, и подуровней на четвёртом уровне четыре. К перечисленным выше добавляется `3` `(f)`.  Орбитали  `f`-подуровня имеют более сложную, объёмную, форму.

    Магнитное квантовое число `ml` определяет число орбиталей на каждом подуровне и характеризует их взаимное расположение.

    Принимает значения `-l` до `+l`, включая `0`.

    наПример

    При `l=0`, `m_l` принимает только одно значение - `0`. Следовательно, орбиталь, находящаяся на данном подуровне (`s`-подуровне), только одна. Мы уже знаем, что она имеет форму сферы с центром в начале координат.

    При `l=1`, `m_l` принимает три значения: `−1`; `0`; `+1`. Значит, орбиталей на данном подуровне (`p`-подуровне) три. Так как `p`-орбитали представляют из себя объёмные восьмёрки (то есть линейной структуры), располагаются они в пространстве по осям координат, перпендикулярно друг другу (`p_x`, `p_y`, `p_z`).

    При `l=2`, `m_l` принимает уже пять значений: `−2`; `−1`; `0`; `+1`; `+2`. То есть на `d`-подуровне располагаются пять орбиталей. Это плоскостные структуры, в пространстве занимают пять положений.

    При  `l=3`, то есть на `f`-подуровне, орбиталей становится семь, так как `m_l` - принимает семь значений (от `−3` до `+3` через `0`). Орбитали являются более сложными объёмными структурами, и взаимное их расположение еще более сложно.

    Спиновое квантовое число `m_s` характеризует собственный момент количества движения электрона и принимает только два значения: `+1//2` и `-1//2`. 

    Электронная ёмкость подуровня (максимальное количество электронов на подуровне) может быть рассчитана по формуле `2(2l+1)`, а уровня - по формуле `2n^2`.

    Всё вышесказанное можно обобщить в Таблице 2.

    Таблица 2. Квантовые числа, атомные орбитали и число электронов на подуровнях (для `n<=4`)

    `n`

    `l`

    Обозначение орбитали

    `ml`

    Число

    орбиталей

    Число электронов на подуровне

    `1`

    `0`

    `1s`

    `0`

    `1`

    `2`

    `2`

    `0`

    `1`

    `2s`

    `2p`

    `0`

    `−1`; `0`; `+1`

    `1`

    `3`

    `2`

    `6`

    `3`

    `0`

    `1`

    `2`

    `3s`

    `3p`

    `3d`

    `0`

    `−1`; `0`; `+1`

    `−2`; `−1`; `0`; `+1`; `+2`

    `1`

    `3`

    `5`

    `2`

    `6`

    `10`

    `4`

    `0`

    `1`

    `2`

    `3`

    `4s`

    `4p`

    `4d`

    `4f`

    `0`

    `−1`; `0`; `+1`

    `−2`; `−1`; `0`; `+1`; `+2`

    `−3`; `−2`; `−1`; `0`; `+1`; `+2`; `+3`

    `1`

    `3`

    `5`

    `7`

    `2`

    `6`

    `10`

    `14`

    Химические свойства элементов и их соединений определяются электронным строением валентного уровня их атомов. Именно с участием электронов валентного уровня возникают химические связи между атомами и образуется соединение (вещество). Поэтому важно понимать правила заполнения электронных оболочек, строение валентного уровня и составлять электронную конфигурацию атомов элементов.

  • 1.4 Правила заполнения электронных оболочек и составление электронных конфигураций атомов

    Распределение электронов по атомным орбиталям (АО) происходит в соответствии с принципом наименьшей энергии, принципом Паули и правилом Гунда.

    1. Принцип наименьшей энергии

    требует, чтобы электроны заселяли АО в порядке увеличения их энергии: в первую очередь заполняются уровни и подуровни с наиболее низкой энергией и далее - подуровни по мере роста их энергии.

    Это отражает общие термодинамические тенденции - максимуму устойчивости системы соответствует минимум её энергии. Самым низким по энергии, как уже говорилось, является первый, ближайший к ядру энергетический уровень с `n = 1`.

    В многоэлектронных атомах электрон взаимодействует не только с ядром (электростатическое притяжение), но и с другими электронами (электро-статическое отталкивание). В этом случае его энергия определяется не только главным `n`, но и орбитальным `l` квантовыми числами. Орбитальное число определяет форму орбиталей, и чем сложнее их форма, тем выше энергия подуровня который они составляют. Таким образом, при одном и том же значении n энергия возрастает с ростом `l:`

    `ns < np < nd < nf`.

    Из спектров излучения и поглощения атомов экспериментально был определен ряд энергетической последовательности подуровней в электронной оболочке:

    `1s < 2s < 2p < 3s < 3p < 4s < 3d < 4p < 5s < 4d < 5p < 6s < 5d ~~`

    `~~4f < 6p < 7s < 6d~~5f < 7p`.

    Схематически распределение энергетических подуровней представлено на рис. 2.

    2.правило Гунда

    В пределах одного подуровня электроны заселяют орбитали в соответствии с правилом Гунда: наименьшей энергией обладает конфигурация подуровня с максимальным спином. Это означает, что при заполнении подуровня, электроны располагаются на орбиталях сначала поодиночке, а затем уже начинают образовывать пары.

    Например, если на `p`-подуровне имеется три электрона, то сначала они располагаются так:

    В этом случает сумма спинов всех трех электронов (суммарный спин подуровня) будет равна `1/2+1/2+1/2=1  1/2`.

    Если бы электроны расположились так:

    то суммарный спин был бы равен `1/2-1/2+1/2=1/2`.

    Правило Гунда выведено на основании изучения атомных спектров.

    Квантово-механическая природа этого правила основана на том, что электроны с разными значениями `m_l` (в нашем примере $$ –1;$$ $$ 0$$; $$ +1$$) наиболее пространственно удалены друг от друга и энергия их электростатического отталкивания минимальна.

    3. Принцип Паули (или принцип запрета Паули)

    утверждает, что в атоме не может быть двух электронов с одинаковым набором всех четырех квантовых чисел.

    Как следствие, на одной орбитали не может находиться более двух электронов. При этом их спины будут противоположными.

    Все вышеизложенные правила определяют энергию электрона, электронную конфигурацию атома и местоположение элемента в Периодической системе Д.И. Менделеева.



  • 1.5 Электронные конфигурации атомов

    Обозначение того, как электроны распределяются по энергетическим уровням (электронным оболочкам), подуровням и орбиталям, называется электронной конфигурацией атома

    Электронную конфигурацию атома

    составляют следующим образом: записывают главное квантовое число цифрой, затем - букву, соответствующую квантовому числу `l`, и далее указывают в виде надстрочного индекса справа число электронов на подуровне.

    Так, для атома `"H"` электронная конфигурация имеет вид $$1 {s}^{1}$$, для атома `"He"` - $$1 {s}^{2}$$. Если хотят показать число электронов не только на подуровне, но и на орбиталях, то представляют орбитальную диаграмму. Орбитали на диаграмме обычно изображают в форме прямоугольников.

    Электроны изображают в виде стрелок.

    Две стрелки в одном квадрате указывают, что на орбитали присутствуют два электрона с противоположными спинами, одна стрелка - один неспаренный электрон, пустой квадрат - орбиталь без электронов:

    Каждая группа орбиталей одного подуровня сохраняет обозначение подуровня. Например, электронная конфигурация атома бора $$ {}_{5}\mathrm{B}$$ имеет вид $$ 1{s}^{2}2{s}^{2}2{p}^{1}$$, ей соответствует следующая орбитальная диаграмма:

    У атома следующего за бором элемента углерода $$ {}_{6}\mathrm{C}$$ число электронов и протонов увеличивается на единицу. На какой орбитали разместится следующий электрон? В соответствии с правилом Гунда, электроны избегают занимать одну и ту же орбиталь настолько, насколько это возможно. И, следовательно, орбитальная диаграмма углерода будет выглядеть так:

    После того, как электроны поодиночке заполнят орбитали одного под-уровня, они начинают образовывать пары. У атома кислорода $$ {}_{8}\mathrm{O}$$ электронная конфигурация $$ 1{s}^{2}2{s}^{2}2{p}^{4}$$, а орбитальная диаграмма следующая:

    Завершается заполнение `p`-подуровня второго уровня у атома благородного газа неона: $$ {}_{10}\mathrm{Ne}$$ $$ 1{s}^{2}2{s}^{2}2{p}^{6}$$

    Такая конфигурация внешнего уровня придает энергетической оболочке любого благородного газа очень большую устойчивость вследствие равномерного, практически сферически симметричного распределения отрицательного заряда.

    Заполненные энергетические подуровни, которые соответствуют электронным конфигурациям благородных газов, называют электронным остовом. Внешние электронные уровни, на которых располагаются электроны, наименее прочно связанные с ядром и участвующие в химических реакциях, называются валентными.

    При написании электронных формул часто заменяют формулу электронного остова химическим символом соответствующего благородного газа, взятым в квадратные скобки, например $$ 1{s}^{2}2{s}^{2}2{p}^{6}=\left[\mathrm{Ne}\right]$$, и тогда электронную формулу, например, алюминия $$ 1{s}^{2}2{s}^{2}2{p}^{6}3{s}^{2}3{p}^{1}$$ можно записать проще: $$ \left[\mathrm{Ne}\right]3{s}^{2}3{p}^{1}.$$ При составлении же орбитальных диаграмм вообще не имеет смысла рисовать электронный остов - для понимания химических свойств элемента достаточно уметь правильно составлять диаграмму его валентного уровня. При этом важно изображать и вакантные орбитали валентных подуровней (если таковые имеются), чтобы учитывать возможность распаривания электронных пар при переходе атома в возбуждённое состояние. Например, электронную конфигурацию серы $$ \left[\mathrm{Ne}\right]3{s}^{2}3{p}^{4}$$, её валентный уровень с помощью орбитальной диаграммы можно изобразить так:

    Несмотря на то, что на `3d`-подуровне у серы нет электронов, орбитали этого подуровня следует изображать. При поглощении кванта энергии атом серы может перейти в возбужденное состояние `S^**` и распарить свои электронные пары с `3s`- и `3p`-подуровней на более высокий по энергии  `3d`: 

  • 1.6 ПСХЭ в свете теории строения атома

    Между положением элемента в периодической системе элементов и распределением электронов в его атоме по энергетическим уровням наблюдается определенная связь.

    Проследим, как происходит заполнение электронами электронных оболочек атомов элементов $$ 1-6$$ периодов Периодической системы химических элементов Д.И. Менделеева.

    В первом периоде находятся только те элементы, у которых электронами заполняется `ls`-подуровень: водород `"H"` $$ \left(1{s}^{1}\right)$$ и гелий `"He"` $$ \left(1{s}^{2}\right)$$. Емкость первого энергетического уровня на этом исчерпана, поэтому следующий электрон оказывается на втором энергетическом уровне - в Периодической системе открывается второй период. Он начинается элементами, у которых также заполняется `s`-подуровень: литий `"Li"` $$ \left(2{s}^{1}\right)$$ и бериллий `"Be"` $$ \left(2{s}^{2}\right)$$.

    Элементы, в атомах которых последним заполняется `s`-подуровень внешнего уровня, называют `s`-элементами. К ним относятся `"H"`, `"He"`, и элементы `"IA"` и `"IIA"`-групп: $$ \mathrm{Li},\mathrm{Na},\mathrm{K},\mathrm{Rb},\mathrm{Cs},\mathrm{Fr},\mathrm{Be},\mathrm{Mg},\mathrm{Ca},\mathrm{Sr},\mathrm{Ba},\mathrm{Ra}.$$

    Затем происходит заполнение `p`-подуровня. Элементы, в атомах которых последним заполняется `p`-подуровень внешнего энергетического уровня, называют `p`-элементами. Во втором периоде это `"B"` ($$ 2{s}^{2}2{p}^{1}$$), `"C"` ($$ 2{s}^{2}2{p}^{2}$$), `"N"` ($$ 2{s}^{2}2{p}^{1})$$, `"О"` $$ \left(2{s}^{2}2{p}^{4}\right)$$, `"F"` $$ \left(2{s}^{2}2{p}^{5}\right)$$, `"Ne"` $$ \left(2{s}^{2}2{p}^{6}\right).$$ На втором энергетическом уровне может находиться не больше восьми электронов, поэтому в данном периоде не может быть больше восьми элементов.

    Далее следует третий период. Он также начинается с `s`-элементов: `"Na"` $$ \left(3{s}^{1}\right)$$ и `"Mg"` $$ \left(3{s}^{2}\right)$$ и продолжается `p`-элементами от `"Al"` $$ \left(3{s}^{2}3{p}^{1}\right)$$ до `"Ar"` $$ \left(3{s}^{2}3{p}^{6}\right).$$ Можно было бы ожидать, что третий период будет продолжаться и далее, ведь на третьем энергетическом уровне может находиться `18` электронов, так как появляется `d`-подуровень, состоящий из пяти орбиталей. Тем не менее период завершается. Почему?

    Электронная конфигурация остова элементов четвертого периода соответствует конфигурации аргона - $$ 3{s}^{2}3{p}^{6}$$. Как и все благородногазовые конфигурации, она является очень плотным и симметричным электронным слоем, который работает в двух направлениях: экранирует (заслоняет) заряд ядра и отталкивает от себя 19-й электрон атома калия и 20-й электрон атома кальция - для них энергетически выгодным является `4s`-состояние: $$ \mathrm{K}\left[\mathrm{Ar}\right]4{s}^{1}$$ и $$ \mathrm{Ca}\left[\mathrm{Ar}\right]4{s}^{2}$$.

    Однако для следующего за кальцием 21-го элемента скандия становится возможным `3d`-состояние. Почему? На `4s`-орбитали больше нет вакантных мест, следовательно, 21-му электрону скандия приходится «выбирать» между `3d`- и `4p`-состоянием.

    Для дальнейшего понимания физической сути процесса нужно учитывать тот факт, что заряд ядра каждого последующего элемента также возрастает на единицу, поэтому становится возможным нахождение электронов на орбиталях, близких к $$ {s}^{2}{p}^{6}$$ оболочке, то есть на орбиталях предвнешнего `d`-подуровня. Таким образом, у скандия один электрон «садится» на `3d`-орбиталь, но два других валентных электрона все также находятся на `4s:` $$ \mathrm{Sc}\left[\mathrm{Ar}\right]3{d}^{1}4{s}^{2}.$$

    Так как всего на `d`-подуровне может разместиться `10` электронов, в Периодической системе появляется декада (десять) `d`-элементов.

    Элементы, в атомах которых происходит заполнение `d`-подуровня предвнешнего уровня, называют `d`-элементами. Перечислим `d`-элементы первой декады: `"Sc"(3d^1  4s^2)`, `"Ti"(3d^2  4s^2)`, `"V"(3d^3  4s^2)`, `"Cr"(3d^5  4s^1)`, `"Mn"(3d^5  4s^2)`, `"Fe"(3d^6  4s^2)`, `"Co"(3d^7  4s^2)`, `"Ni"(3d^4  s^2)`, `"Cu"(3d^(10) 4s^1)`, `"Zn"(3d^(10)  4s^2)`.

    Начиная с галлия, происходит заполнение `4p`-подуровня: от `"Ga"` $$ \left(4{s}^{2}4{p}^{1}\right)$$ до завершающего период инертного газа `"Kr"` $$ \left(4{s}^{2}4{p}^{6}\right)$$.

    Аналогично происходит заполнение электронных оболочек в атомах элементов пятого периода.

    Некоторые особенности появляются при формировании электронных оболочек в атомах элементов шестого периода. Он, как и все предыдущие, начинается s-элементами `("Cs", "Ba")`, далее - лантан `"La"`, в атоме которого начинает заполняться `5d`-подуровень ($$ 5{d}^{1}6{s}^{2}$$), но после лантана расположено семейство `f`-элементов. Первая последовательность `f`-элементов - лантаноиды. Они начинаются с $$ \mathrm{Cе}\left(4{f}^{1}5{d}^{1}6{s}^{2}\right)$$ и заканчиваются $$ \mathrm{Lu}(4{f}^{14}5{d}^{1}6{s}^{2}$$). После лантаноидов вновь продолжает заполняться `5d`-подуровень (от `"Hf"` до `"Hg"`). После этого строится `6p`-подуровень (от `"T"1` до `"Rn"`).

    Итак, в появлении подуровней и их заселении электронами можно выявить следующие закономерности:

    во втором периоде `p`-подуровень и появляется, и заполняется. В третьем периоде `d`-подуровень появляется, а заполняется с отставанием на один - в четвёртом. В четвёртом периоде появляется `f`-подуровень, заполняется же он с отставанием уже на два - в шестом.

    Наиболее стабильными состояниями подуровня являются состояния, когда он полностью заполнен электронами, когда заполнен наполовину, либо когда совсем пуст. То есть для `p`-подуровня стабильными являются `p^0`, `p^3` и `p^6` состояния, для `d`-подуровня - $$ {d}^{0},{d}^{5}$$и $$ {d}^{10}$$, для `f`-подуровня - $$ {f}^{0}$$, $$ {f}^{7}$$ и $$ {f}^{14}$$.

    Поэтому в атомах элементов `"Cr"`$$ \left(3{d}^{5}4{s}^{1}\right)$$, `"Mo"`$$ \left(4{d}^{5}5{s}^{1}\right)$$, `"Cu"`$$ \left(3{d}^{10}4{s}^{1}\right)$$, `"Ag"`$$ \left(4{d}^{10}5{s}^{1}\right)$$, `"Au"(5d^(10)6s^1)` наблюдается «провал» электрона: электрон с внешнего `s`-подуровня переходит на `d`-предвнешний подуровень, для того чтобы он оказался или наполовину завершённым `("Cr"` и `"Mo")`, или полностью завершённым `"(Cu, Ag, Аu)"`. Явление «провала» электрона присуще также и некоторым другим `d`-элементам.

    Примеры

    Рассмотрим электронную конфигурацию `p`-элемента на примере атома брома:

    `"Br"` - элемент № 35, четвёртый период, `"VII  A"`-группа.

    Так как бром находится в четвёртом периоде, то его электроны располагаются на четырёх энергетических уровнях. Атомному номеру элемента соответствует заряд ядра, т. е. для брома $$ +35$$. Он должен быть компенсирован 35-ю электронами, находящимися в электронной оболочке. Схема электронной конфигурации атома брома $$ 1{s}^{2}2{s}^{2}2{p}^{6}3{s}^{2}3{p}^{6}3{d}^{10}4{s}^{2}4{p}^{5}$$ или $$ \left[\mathrm{Ar}\right]4{s}^{2}4{p}^{5}$$. Его валентный уровень состоит из двух подуровней: внешних `4s` и `4p`. Семь электронов, размещенных на этих подуровнях являются валентными, то есть принимают участие в образовании связей атома селена с другими атомами.

    Изобразим орбитальную диаграмму валентного уровня брома:

    Орбитали внешнего `4d`-подуровня можно и не изображать, они нужны лишь для того, чтобы показать, что у брома есть возможность распарить свои `4p`-электроны.

    Рассмотрим электронную конфигурацию `d`-элемента на примере атома титана:

    `"Ti"` - элемент № 22, четвёртый период, `"IV B"`-группа.

    Так как титан находится в четвёртом периоде, то его электроны располагаются на четырёх энергетических уровнях. Атомному номеру элемента соответствует заряд ядра, т. е. для титана $$ +22$$. Он должен быть компенсирован 22-мя электронами, находящимися в электронной оболочке. Схема электронной конфигурации атома титана $$ 1{s}^{2}2{s}^{2}2{p}^{6}3{s}^{2}3{p}^{6}3{d}^{2}4{s}^{2}$$ или $$ \left[\mathrm{Ar}\right]3{d}^{2}4{s}^{2}$$. Его валентный уровень состоит из двух подуровней: предвнешнего `3d` и внешнего `4s`. Четыре электрона, размещенных на этих подуровнях являются валентными, то есть принимают участие в образовании связей атома титана с другими атомами.

    Изобразим орбитальную диаграмму валентного уровня титана:

    Орбитали внешнего `4p`-подуровня можно и не изображать, они нужны лишь для того, чтобы показать, что у титана есть возможность распарить свои `4s`-электроны.

    Рассмотрим электронную конфигурацию следующих частиц: $$ {\mathrm{Br}}^{1-},{\mathrm{Br}}^{3+},{\mathrm{Ti}}^{2+},{\mathrm{Ti}}^{4+}.$$

    Как уже говорилось, электронная конфигурация атома брома такова: $$ 1{s}^{2}2{s}^{2}2{p}^{6}3{s}^{2}3{p}^{6}3{d}^{10}4{s}^{2}4{p}^{5}$$ или $$ \left[\mathrm{Ar}\right]4{s}^{2}4{p}^{5}$$. Однако, в химических реакциях бром, как любой неметалл, может принимать электроны, проявляя окислительные свойства и понижать свою степень окисления:

    $$\stackrel{\mathbf{0}}{\mathbf{Br}}\mathbf{+}{\mathit{e}}^{\mathbf{-}}\mathbf{=}\stackrel{\mathbf{-1}}{\mathbf{Br}}$$

    Тогда, `["Ar"]4s^2  4p^5+e^-  =["Ar"]4s^2  4p^6` или `["Kr"]`.

    Может ли атом брома в химической реакции присоединить более одного электрона? Нет, так как вакансий на валентном уровне больше нет.

    Если атом брома проявляет восстановительные свойства и отдает электроны, его степень окисления повышается. Например, рассмотрим электронную конфигурацию брома в степени окисления $$ +3$$:

    $$ \stackrel{\mathbf{0}}{\mathbf{Br}}\mathbf{-}\mathbf{3}{\mathbf{e}}^{\mathbf{-}}\mathbf{=}\stackrel{\mathbf{+}\mathbf{3}}{\mathbf{Br}}$$

    $$ \left[\mathrm{Ar}\right]4{s}^{2}4{p}^{5}–3{е}^{-}$$  $$ =\left[\mathrm{Ar}\right]4{s}^{2}4{p}^{2}$$

    Сколько всего электронов может отдать атом брома в химической реакции и какую максимальную степень окисления он может проявить? Так как на валентном уровне брома располагаются $$ 7$$ электронов - $$ 4{s}^{2}4{p}^{5}$$ - он может отдать все семь электронов и проявить высшую степень окисления $$ +7$$, равную номеру группы. Кроме неё из положительных степеней окисления он проявляет $$ +1,+3,+5$$, но только в окружении атомов более электроотрицательных элементов - кислорода и фтора, например в составе гипобромит-, бромит-, бромат- и пербомат-анионов: `"BrO"^-`, `"BrO"_2^-`, `"BrO"_3^-` и `"BrO"_4^-`.

    При образовании катионов важно помнить, что электроны уходят с самого дальнего (внешнего) от ядра подуровня. 

    Атомы металла титана, как атомы любого металла, не обладают окислительной активностью. Металлы никогда не проявляют отрицательных степеней окисления (в соединениях с неметаллами). А вот работать восстановителями, то есть повышать свою степень окисления, отдавая в реакциях электроны, они могут. Рассмотрим образование катионов титана $$ \stackrel{+2}{\mathrm{Ti}}$$ и $$ \stackrel{+4}{\mathrm{Ti}}$$.

    Электронная конфигурация атома титана такова: $$ 1{s}^{2}2{s}^{2}2p63{s}^{2}3{p}^{6}3{d}^{2}4{s}^{2}$$ или $$ \left[\mathrm{Ar}\right]3{d}^{2}4{s}^{2}$$. При образовании $$ \stackrel{+2}{\mathrm{Ti}}$$катиона валентные электроны уходят с самого дальнего от ядра подуровня - с $$ 4{s}^{2}$$:

                             $$ \left[\mathrm{Ar}\right]3{d}^{2}4{s}^{2}–2{е}^{-}=\left[\mathrm{Ar}\right]3{d}^{2}4{s}^{0},$$

    а при образовании $$ \stackrel{+4}{\mathrm{Ti}}$$ с валентного уровня, состоящего из предвнешнего `3d`- и внешнего `4s`-подуровней, уходят все электроны:

     $$ \left[\mathrm{Ar}\right]3{d}^{2}4{s}^{2}–4{е}^{–}$$$$ =\left[\mathrm{Ar}\right]3{d}^{0}4{s}^{0}$$ или просто `["Ar"]`.

    Иногда у учащихся возникает недопонимание: если при заселении элек-тронной оболочки электроны в первую очередь «садятся» на `4s`, а потом на `3d`, то при отдаче электронов порядок должен сохраниться прежний: сначала электроны уйдут с `3d`, и только потом с `4s`. Однако, правило почему-то этот порядок игнорирует. На самом деле логика заключается в следующем: физически подуровни располагаются вокруг ядра в соответствии с возрастанием главного и орбитального квантовых чисел:

    $$1s<2s<2p<3s<\mathbf{3}\mathit{p}\mathbf{<}\mathbf{3}\mathit{d}\mathbf{<}\mathbf{4}\mathit{s}\mathbf{<}\mathbf{4}\mathit{p}<5s...$$,

    но из-за межэлектронного отталкивания в нейтральном атоме (при равенстве числа протонов и электронов) порядок заполнения подуровней меняется: как уже говорилось, состояние `4s`, например, становится выгоднее `3d`, и энергетическая последовательность заполнения становится такой:

    $$1s<2s<2p<3s<\mathbf{3}\mathit{p}\mathbf{<}\mathbf{4}\mathit{s}\mathbf{<}\mathbf{3}\mathit{d}\mathbf{<}\mathbf{4}\mathit{p}<5s...$$.

    Но при этом `4s` подуровень остается внешним, то есть наиболее отдаленным от ядра, по сравнению с `3d`! Поэтому при образовании катионов `d`-элементов электроны уходят именно с него.

    1. Допустим, имеем ядро атома титана с зарядом `+22` и постепенно по одному и начинаем заполнять окружающее ядро пространство электронами, соблюдая принцип наименьшей энергии, Паули и правило Гунда. Таким образом, заселили $$ 18$$ электронов и получили $$ {}_{22}\mathrm{Ti}^{+4}\left[{}_{18}\mathrm{Ar}\right]3{d}^{0}4{s}^{0}$$. Обращаем внимание, что при этом заряд ядра `(+22)` значительно превышает заряд электронной оболочки $$ (-18)$$, а незаполненные $$ 3{d}^{0}4{s}^{0}$$ орбитали под влиянием возросшего и нескомпенсированного заряда ядра расположатся соответственно

    и радиус `3d`-орбитали << радиуса `4s`-орбитали.

    Следующие 19-ый и 20-й электроны заселят по одному две более низкие по энергии 3d-орбитали $$ \left({}_{22}\mathrm{Ti}+2\left[{}_{18}\mathrm{Ar}\right]3{d}^{2}4{s}^{0}\right)$$, а потом уже оставшиеся `2` электрона займут `4s`-орбиталь $$ \left({}_{22}\mathrm{Ti}\left[{}_{18}\mathrm{Ar}\right]3{d}^{2}4{s}^{2}\right)$$. При обратном процессе образования катионов электроны уходят сначала с более высокой по энергии `4s`-орбитали, и никакого противоречия не наблюдается.)

    2. В ряду `1s<2s<2p<3s<3p<4s<3d<4p<5s`, иллюстрирующем правило Клечковского, энерия `4s<3d`. Однако это справедливо только для атомов `"K"` и `"Ca"`. Во всех случаях, когда `d`-орбитали заселены (хотя бы одним электроном) их энергия ниже (или равна у $$ \mathrm{Sc}$$) энергии `s`-орбитали и энергетическая разница между ними увеличивается с ростом заряда ядра (числом `e` на `d`-орбиталях, см таблицу энергетических уровней). Тем не менее правило Клечковского очень важно, поскольку даёт возможность определить, на каких именно орбиталях в атомах находятся электроны (ничего не говоря об энергии валентных орбиталей).

    Выводы

    Из рассмотрения электронной структуры невозбужденных атомов в зависимости от порядкового номера элемента следует:

    • Число энергетических уровней (электронных слоев) атома любого элемента равно номеру периода, в котором находится элемент. Значит, `s`-элементы находятся во всех периодах, `p`-элементы - во втором и последующих, `d`-элементы - в четвёртом и последующих и `f`-элементы - в шестом и седьмом периодах.
    • Номер периода совпадает с главным квантовым числом внешних электронов атома.
    • Номер группы, как правило, указывает на число электронов, которые могут участвовать в образовании химических связей (валентных электронов). В этом состоит физический смысл номера группы. У элементов побочных подгрупп валентными являются электроны не только внешних, но и предвнешних подуровней. Это является основным различием в свойствах элементов главных и побочных подгрупп.
    • `s`- и `p`-элементы образуют главные подгруппы (валентными являются электроны внешних `s`- и `р`-подуровней), `d`-элементы - побочные подгруппы (валентными являются электроны предвнешнего `d`- и внешнего `s`-подуровней), `f`-элементы образуют семейства лантаноидов и актиноидов и также являются элементами побочной подгруппы третьей группы (валентными электронами являются электроны предпредвнешнего `f`- и внешнего `s`-подуровней). Таким образом, подгруппа включает элементы, атомы которых обычно имеют сходное строение не только внешнего, но и предвнешнего слоя (за исключением элементов, в которых имеет место «провал» электрона). То есть у элементов одной группы одинаковое число электронов на валентном уровне, а у элементов одной подгруппы - одинаковое число электронов и одинаковое строение валентного уровня.
    • Элементы с валентными `d`- или `f`-электронами называются переходными.

     

     

    • 1.7 Свойства атомов и их периодичность

      Такие характеристики атомов, как их радиус, энергия ионизации, сродство к электрону, электроотрицательность, степень окисления, связаны с электронным строением атома.

      Атомный радиус

      За радиус свободного атома принимают положение главного максимума плотности внешних электронных оболочек. Это так называемый орбитальный радиус.

      Элементы одного и того же периода имеют одинаковое количество электронных слоев. Поэтому в одном периоде по мере увеличения заряда ядра увеличивается сила притяжения электронов к ядру, что вызывает уменьшение радиуса атома. Например, при переходе от лития к фтору заряд ядра атома растет от $$ 3$$ до $$ 9$$, а радиус атома постепенно уменьшается - от $$ \mathrm{0,152}$$ до $$ \mathrm{0,064}$$ нм. Согласно закону Кулона, притяжение электронов ядром в пределах периода слева направо увеличивается, а, следовательно, уменьшается способность атомов элементов отдавать электроны, то есть проявлять восстановительные (металлические) свойства. Окислительные (неметаллические) свойства, напротив, становятся все более выраженными и достигают максимального проявления у фтора.

      Если атом лития легко теряет свой единственный $$ 2{s}^{1}$$-электрон, то у последующих элементов второго периода тенденция к потере электронов ослабевает по мере увеличения числа электронов. Так, у атома углерода $$( 1{s}^{2}2{s}^{2}2{р}^{2})$$ способность отдавать электроны или присоединять их до полного заполнения электронного слоя примерно одинакова. У атома кислорода прео-бладает стремление к присоединению электронов, а фтор вообще не проявляет восстановительных свойств и является единственным элементом, который в химических реакциях не проявляет положительных степеней окисления.

      В главных подгруппах с увеличением заряда ядра атома элемента увеличи-вается радиус атома элемента, так как в этом направлении возрастает число электронных слоев в атоме элемента. Поэтому в главной подгруппе сверху вниз нарастают металлические (восстановительные) свойства элементов.

      В побочных подгруппах при переходе от первого элемента ко второму происходит увеличение радиуса атома элемента за счет добавления еще одного электронного слоя, а при переходе от второго элемента к третьему - даже некоторое уменьшение. Это объясняется `f`-(лантаноидным) сжатием.

      Поэтому в побочных подгруппах с увеличением заряда ядра уменьшаются металлические свойства (за исключение побочной подгруппы третьей группы).

      Радиус катиона меньше радиуса соответствующего ему атома, причём с увеличением положительного заряда катиона его радиус уменьшается. Наоборот, радиус аниона всегда больше радиуса соответствующего ему атома. Изоэлектронными называют частицы (атомы и ионы), имеющие одинаковое число электронов. В ряду изоэлектронных ионов радиус снижается с уменьшением отрицательного и возрастанием положительного радиуса иона. Такое уменьшение имеет место, например в ряду: $$ {\mathrm{O}}^{2–},{\mathrm{F}}^{–},{\mathrm{Na}}^{+},{\mathrm{Mg}}^{2+},\mathrm{Al}^{3+}.$$

      Энергия ионизации $$ \left(\mathrm{I}\right)$$

      энергия, необходимая для отрыва электрона от атома, находящегося в основном состоянии. Она характеризует восстановительные (металлические) свойства атомов и обычно выражается в электронвольтах ($$ 1$$ эВ = $$ \mathrm{96,485}$$ кДж/моль). В периоде слева направо энергия ионизации возрастает с увеличением заряда ядра и уменьшением радиуса атомов. В главных подгруппах сверху вниз она уменьшается, т. к. увеличивается расстояние электрона до ядра и возрастает экранирующее действие внутренних электронных слоев.

      Наименьшее значение энергии ионизации имеют щелочные металлы, поэтому они обладают ярко выраженными металлическими свойствами, наибольшая величина энергии ионизации у инертных газов.

      Сродство к электрону ($$ {Е}_{\mathrm{ср}}$$)

      энергия, выделяющаяся при присоединении электрона к нейтральному атому. Характеризует окислительные (неметаллические) свойства атомов. Как и энергия ионизации, обычно выражается в электронвольтах. Наибольшее сродство к электрону - у галогенов, наименьшее - у щелочных металлов.

      Самый сильный окислитель из всех элементарных окислителей - фтор (он обладает и самым малым атомным радиусом из всех элементов $$ \mathrm{VII}$$ группы).

      Следует отметить, что в отличие от ионизации присоединение двух и более электронов к атому энергетически затруднено, и многозарядные одноатомные отрицательные ионы, такие как `"N"^(3-)` или `"O"^(2-)`, в свободном состоянии не существуют.

      Окислительной способностью не обладают нейтральные атомы с устойчивыми конфигурациями $$ {s}^{2}$$ и $$ {s}^{2}{p}^{6}$$. У остальных элементов в таблице Менделеева окислительная способность нейтральных атомов повышается слева направо и снизу вверх.

      Электроотрицательность (ЭО)

      понятие, позволяющее оценить способность атома оттягивать на себя электронную плотность при образовании химического соединения. Согласно одному из определений (Малликен), электро-отрицательность можно определить как полусумму энергии ионизации и сродства к электрону:

      `"X"=(I+E)/2`.

      Относительная ЭО (OЭO) фтора по Полингу принята равной четырем. Наименьшими ОЭО обладают элементы $$ \mathrm{IА}$$ подгруппы ($$ \mathrm{0,7}–\mathrm{1,0}$$), большими азот и хлор `(3)`, кислород `(3,5)` и фтор. ОЭО `d` – элементов лежит в пределах $$ \mathrm{1,2}–\mathrm{2,2},$$ а `f` – элементов $$ \mathrm{1,1}–\mathrm{1,2}.$$

      В периодах ЭО растёт, а в группах уменьшается с ростом $$ \mathrm{Z}$$, то есть растет от $$ \mathrm{Cs}$$ к $$ \mathrm{F}$$ по диагонали периодической системы. Это обстоятельство до некоторой степени определяет диагональное сродство элементов.

      Для характеристики состояния элементов в соединениях введено понятие степени окисления.

      Под степенью окисления понимают условный заряд атома элемента в соединении, вычисленный из предположения, что соединение состоит из ионов и валентные электроны оттянуты к наиболее электроотрицательному атому. Иначе говоря, 

      степень окисления показывает, сколько электронов атом либо отдал своих (положительная), либо притянул к себе чужих (отрицательная).

      Пример

      Напишите электронную конфигурацию атома фосфора и составьте орбитальную диаграмму его валентного уровня. Определите все его возможные степени окисления. Напишите электронные конфигурации всех его заряженных частиц. Расположите данные частицы в порядке увеличения радиуса.

      Решение

      Фосфор находится в третьем периоде, пятой группе, главной подгруппе. Следовательно, его электронная оболочка состоит из трёх уровней. Валентный уровень состоит из внешних `s`- и `р`-подуровней (на это указывает главная группа). Всего валентных электронов у фосфора пять (номер группы $$ 5$$). Конфигурация атома $$ {}_{31}\mathrm{P}$$ $$ 1{s}^{2}2{s}^{2}2{p}^{6}3{s}^{2}3{p}^{3}.$$

      Орбитальная диаграмма валентного уровня:

      Для того, чтобы принять конфигурацию благородного газа, фосфор может либо принять $$ 3$$ электрона (тогда он примет конфигурацию аргона), либо отдать все свои валентные пять электронов (тогда он примет конфигурацию неона). Таким образом, низшая степень окисления фосфора равна `(–3)`, а высшая – `(+5)`.

      Для проявления степени окисления `(+5)` фосфор поглощает квант энергии и распаривает свои `3s`-электроны в пределах энергетического уровня на `3d`-подуровень:

      Однако, кроме этих крайних степеней окисления фосфор может проявлять еще и промежуточную степень окисления `(+3)` за счёт отдачи своих непарных валентных электронов с `p`-подуровня.

      Конфигурации заряженных частиц фосфора:

      `"P"^(-3)`     $$ 1{s}^{2}2{s}^{2}2{p}^{6}3{s}^{2}3{p}^{6}$$ или $$ \left[\mathrm{Ar}\right]$$;

      `"P"^(+3)`     $$ 1{s}^{2}2{s}^{2}2{p}^{6}3{s}^{2}3{p}^{0}$$

      `"P"^(+5)`     $$ 1{s}^{2}2{s}^{2}2{p}^{6}3{s}^{0}3{p}^{0}$$ или $$ \left[\mathrm{Ne}\right]$$.

      Расположим данные заряженные частицы в порядке возрастания радиуса. Следует помнить, что число протонов в ядре не изменилось, а значит, отрицательно заряженная частица, у которой электронов больше, чем протонов, будет иметь больший радиус, и чем ниже заряд частицы, тем больше её радиус. И наоборот, чем выше заряд частицы, тем меньше её радиус, так как силы притяжения электронов к ядру у такой частицы преобладают над силами межэлектронного отталкивания:

      `R("P"^(+5))<R("P"^(+3))<R("P"^(-3))`.


       

    • 1.8 Правила определения степеней окисления атомов в соединениях*

      Для того, чтобы уметь определять степени окисления атомов в соединениях, нужно знать следующие правила:

      1)

      степень окисления атомов в простом веществе равна $$ 0$$.

      2)

      Есть элементы, атомы которых проявляют постоянные степени окисления (вы поймете почему, если вспомните строение их валентного уровня и учтете размер их атомов):

            фтор: $$ -1$$

            кислород: $$ -2$$ (есть исключения: $$ {\mathrm{O}}^{+2}{\mathrm{F}}_{2}$$, пероксиды и надпероксиды);

            все щелочные металлы ($$ \mathrm{IA}$$-подгруппа): $$ +1$$;

            все элементы $$ \mathrm{II}$$ группы (кроме $$ \mathrm{Hg}$$): $$ +2$$;

      алюминий: $$ +3$$; водород с металлами: $$ -1$$, с неметаллами: $$ +1$$.

      3)

      Все остальные элементы проявляют переменные степени окисления. Например, сера - может принять $$ 2$$ электрона и проявить отрицательную степень окисления $$( -2)$$, или отдать $$ 2, 4$$ или все `6` электронов со своего внешнего уровня, и проявить, соответственно, степень окисления $$ +2,+4$$ или $$ +6$$.

      $$ {}_{16}\mathrm{S} 1{s}^{2}2{s}^{2}2{p}^{6}\underline{3{s}^{2}3{p}^{4}}$$ или $$ \left[\mathrm{Ne}\right]\underline{3{s}^{2}3{p}^{4}}\to +2{\mathrm{e}}^{-}\to {}_{16}\mathrm{S}^{2-}1{s}^{2}2{s}^{2}2{p}^{6}\underline{)3{s}^{2}3{p}^{6}}$$ или `["Ar"]`

      $$ {}_{16}\mathrm{S}\left[\mathrm{Ne}\right]\underline{3{s}^{2}3{p}^{4}}\to -2{\mathrm{e}}^{-}\to {}_{16}\mathrm{S}^{2+}1{s}^{2}2{s}^{2}2{p}^{6}\underline{3{s}^{2}3{p}^{6}}$$ или `["Ne"]ul(3s^2 3p^2)`

      $$ {}_{16}\mathrm{S}\left[\mathrm{Ne}\right]\underline{3{s}^{2}3{p}^{4}}\to -4{\mathrm{e}}^{-}\to {}_{16}\mathrm{S}^{4+}1{s}^{2}2{s}^{2}2{p}^{6}\underline{3{s}^{2}}$$ или `["Ne"]ul(3s^2)`

      $$ {}_{16}\mathrm{S}\left[\mathrm{Ne}\right]\underline{3{s}^{2}3{p}^{4}}\to -6{\mathrm{e}}^{-}\to {}_{16}\mathrm{S}^{6+}1{s}^{2}2{s}^{2}2{p}^{6}$$ или `["Ne"]`.

       

      4)

      Для элементов главных подгрупп работает правило «чётностинечётности»: элементы главных подгрупп чётных групп проявляют, как правило, чётные степени окисления, нечетных групп - нечётные.

      5)

      Высшее значение степени окисления элемента (высшая степень окисления) обычно равно номеру группы. Например,

            $$ {}_{6}\mathrm{C}$$ - в $$ \mathrm{IV}$$ группе - высшая степень окисления $$ +4$$

            $$ {}_{15}\mathrm{P}$$ - в $$ \mathrm{V}$$ группе - высшая степень $$ +5$$

            $$ {}_{17}\mathrm{Cl}$$ - в $$ \mathrm{VII}$$ группе - высшая степень $$ +7$$.

      Исключения:

      кислород - хоть и в $$ \mathrm{VI}$$ группе, но степень окисления $$ +6$$ никогда не проявляет;

      фтор - как уже говорилось, кроме нулевой, проявляет единственную степень окисления $$ (–1)$$;

      благородные газы;

      элементы $$ \mathrm{VIII} \mathrm{B}$$ подгруппы - только для $$ \mathrm{Os}$$ и $$ \mathrm{Ru}$$ характерна степень окисления $$ +8$$.

      6)

      Низшее значение степени окисления для металлов равно $$ 0$$, для неметаллов $$ \mathrm{V},\mathrm{VI},\mathrm{VII}$$ групп и углерода: $$ №$$ группы минус `8`.

      Например, для $$ {}_{15}\mathrm{Р}:V-8=-3$$,

      для $$ {}_{35}\mathrm{Br}:\mathrm{VII}-8=-1$$,

      для $$ {}_{34}\mathrm{Se}:\mathrm{VI}-8=-2$$,

      для $$ {}_{56}\mathrm{Ba}=0$$.

      Исключение - бор, водород и благородные газы.

      7)

      Сумма степеней окисления всех атомов в соединении равна `0`, в ионе - заряду этого иона.

      В бинарных соединениях (то есть в соединениях, состоящих из атомов двух разных элементов) степень окисления у атомов с большей электроотрицательностью отрицательна, а с меньшей - положительна.

      Так, в молекуле аммиака $$ {\mathrm{NH}}_{3}$$ ОЭО $$ \left(\mathrm{N}\right)=\mathrm{3,04}$$, а водорода равна $$ \mathrm{2,20}$$. Следовательно, азот проявляет отрицательную степень $$ (-3)$$, а водород - положительную $$ (+1)$$.

      Металлы в соединениях с неметаллами никогда не проявляют отрицательных степеней окисления - они все электроположительнее неметаллов!


    • Контрольные задания (I часть) Строение атома и ПСХЭ



      Контрольные задания (I часть)


      Строение атома и ПСХЭ



        1(10). Ответьте на вопросы:


        а) сколько значений магнитного квантового числа возможно для электро-нов энергетического подуровня, орбитальное квантовое число которого l=3l = 3? б) укажите порядковый номер элемента, у которого заканчивается заполне-ние электронами орбиталей 5d-подуровня.

        в) какое максимальное число электронов может содержать атом в электронном слое с главным квантовым числом n=5n = 5?

        г) сколько вакантных 4d-орбиталей имеет атом селена во втором возбуждённом состоянии?

         д) у какого элемента подуровень 4f заполнен электронами наполовину?

         е) перечислите электронные аналоги элемента ниобия NbNb.

        ж) Справедливо ли утверждение: в атомах щёлочноземельных металлов имеется завершённый (n-1)d(n-1)d – подуровень?

       з) у элементов каких периодов электроны внешнего слоя характеризуются значением n+l=3n + l = 3?

        и) Электронная конфигурация атома 1s22s22p63s23p63d104s11s^22s^22p^63s^23p^63d^{10}4s^1. Какой это эле-мент?

        к) укажите два противоположно заряженных иона, чья электронная конфигурация соответствует конфигурации благородного газа неона.


        2(5). Изобразите электронные конфигурации и электронные диаграммы валентного уровня атомов мышьяка, хрома, платины, кобальта, стронция.


        3(3). Руководствуясь правилами заполнения электронами энергетических уровней и подуровней, запишите электронные конфигурации электроней-тральных атомов по заданным конфигурациям ионов:

        а) Э2+Э^{2+} 1s22s22p21s^22s^22p^2

        б) Э3-Э^{3-} 1s22s22p63s23p61s^22s^22p^63s^23p^6

        в) Э3+[Ar]3d6Э^{3+} [Ar]3d^6


        г) Укажите символы и названия элементов, для которых приведены электронные конфигурации.


        4(1). Расположите элементы P,Ca,O,AsP, Ca, O, As в порядке:


        а) увеличения радиуса;


        б) уменьшения металлических свойств;


        в) уменьшения окислительных свойств;


        г) увеличения электроотрицательности:


        5(1). На каком основании кадмий и бериллий, йод и марганец расположены в одной группе Периодической системы? Почему их помещают в разные подгруппы?

    • 2.1 ХИМИЧЕСКАЯ СВЯЗЬ

      Изучение природы химической связи между частицами вещества в соединении - одна из основных задач химии. Не зная природу взаимодействия атомов в веществе, нельзя понять причины многообразия химических соединений, представить механизм их образования, состав, строение и реакционную способность.

      Совокупность химически связанных атомов (например, молекула, кристалл) представляет собой сложную систему атомных ядер и электронов.

      Химическая связь осуществляется за счёт электростатического взаимодействия электронов и ядер атомов.

      Современные методы исследования позволяют экспериментально определить пространственное расположение атомных ядер в веществе. Данному пространственному размещению атомных ядер отвечает определенное распределение электронной плотности. Выяснить, как распределяется электронная плотность, по сути дела, и означает описать химическую связь в веществе.

      В зависимости от характера распределения электронной плотности в веществе различают три основных типа химической связи: ковалентную, ионную и металлическую. В "чистом" виде перечисленные типы связи проявляются редко. В большинстве соединений имеет место наложение разных типов связи.

      Важнейшей характеристикой химической связи является энергия, определяющая её прочность. Мерой прочности связи может служить количество энергии, затрачиваемое на ее разрыв. Для двухатомных молекул энергия связи равна энергии диссоциации молекул на атомы. `"E"_"дис"`, а следовательно, и энергия связи `"E"_"св"` в молекуле $$ {\mathrm{H}}_{2}$$ составляют $$ 435$$ кДж/моль. В молекуле фтора $$ {\mathrm{F}}_{2}$$ она равна $$ 159$$ кДж/моль, а в молекуле азота $$ {\mathrm{N}}_{2}$$- $$ 940$$ кДж/моль.

      Энергия связи напрямую коррелирует с длиной связи.

      Длина связи

      это межъядерное расстояние между химически связанными атомами. Она зависит от радиуса образующих связь атомов и от кратности самой связи.

      Угол между воображаемыми линиями, проходящими через ядра химически связанных атомов, называют валентным.

      Химическая связь в основном осуществляется так называемыми валентными электронами. У `s`- и `p`-элементов валентными являются электроны `s`- и `p`-орбиталей внешнего слоя, у `d`-элементов - электроны `s`-орбиталей внешнего слоя и `d`-орбиталей предвнешнего слоя, а у `f`-элементов − электроны `s`-орбиталей внешнего слоя и `f`-орбиталей предпредвнешнего слоя.