16 статей
Из наличия упругих свойств твёрдых тел можем заключить, что между молекулами и атомами существуют как силы притяжения, так и силы отталкивания. Исследования показали, что эти силы сильно зависят от расстояния между молекулами.
Если две молекулы разместить так, чтобы расстояние между их центрами составило примерно два радиуса, то сумма сил притяжения и отталкивания равна нулю.
При этом сила отталкивания представлена на графике зависимости силы от расстояния в виде кривой $$ f=a/{r}^{13}$$, а сила притяжения в виде другой кривой $$ f=-b/{r}^{7}$$ (рис. 7). Сумма этих графиков и есть сила взаимодействия между молекулами. По графику видно, что при сближении молекул на расстояние, меньшее $$ 2{r}_{0}$$ между центрами, возникает быстро растущая сила отталкивания, а при удалении этих молекул возникает сначала растущая (по модулю) сила притяжения, а потом эта сила начинает убывать и стремится к нулю на больших расстояниях.
рис. 7 |
Теперь понятно, что даже если сила притяжения или отталкивания между парой молекул мала, то при деформации макроскопического тела таких пар сил возникнет колоссально много, и они дадут в сумме макроскопическую силу упругости, компенсирующую внешнюю силу.
называют изменение формы и размеров тела под действием внешних сил.
Все деформации можно разделить на четыре вида: сжатия – растяжения, изгиб, сдвиг и кручение.
Деформация сжатия-растяжения.
Первоначальная длина тела равна $$ {l}_{0}$$, а конечная длина $$ {l}_{\mathrm{к}}$$. При такой деформации длина тела изменяется на величину:
`Deltal=l_"k"-l_0` - абсолютное удлинение
Величина деформации так же характеризуется безразмерной величиной:
`varepsilon =(Deltal)/l_0` - относительное удлинение.
Примеров таких деформаций очень много: ножки стула, стола, стены зданий, некоторые кости скелета, мачта парусника во время штиля и др.
Робертом Гуком экспериментально было установлено, что:
`(F_"упр")_X=-kDeltal` - закон Гука в интегральной форме (рис. 8).
`k` - коэффициент упругости или жёсткости тела.
Рис. 8 |
Сила упругости, возникающая при деформации, прямо пропорциональна смещению частиц и направлена в сторону, противоположную смещению частиц при деформации.
Закон Гука стал средством для измерения сил. Т. к. чтобы определить величину (модуль) какой - либо силы, необходимо сравнить её с эталоном. Две силы считаются равными по модулю и противоположно направленными, если при их одновременном действии на одно и то же тело его общее ускорение равно нулю (скорость тела не изменяется). Таким образом, можно сравнивать силы и измерять их (если одну из них выбрать в качестве эталона).
На практике пружину, подчиняющуюся закону Гука, градуируют на разные значения силы для измерения силы. Далее воздействуют ею на тело так, чтобы тело стало двигаться равномерно. В этом состоянии сила, ранее действовавшая на тело, стано вится равной силе, действующей со стороны пружины, определяемой по граду и рованной шкале. Прибор для измерения силы называется динамометром.
К резиновому шнуру подвесили груз, под действием которого шнур растянулся на $$ 4 \mathrm{см}$$. Затем шнур сложили вдвое, закрепив сложенные концы вверху, а к середине снова подвесили тот же груз. На сколько шнур растянется во втором случае?
Если шнур в первом случае растянулся на $$ 4 \mathrm{см}$$, то каждая половина шнура растянулась на $$ 2 \mathrm{см}$$, а половины шнура были соединены между собой последовательно. Сила упругости внутри шнура везде одинакова и равна весу груза. Коэффициент жёсткости каждой половины можно представить в виде: $$ {k}_{2}={\displaystyle \frac{mg}{{x}_{0}/2}}$$.
Во втором случае половинки шнура соединены между собой параллельно, следовательно, условие равновесия груза теперь выглядит так:
\[mg = 2\cdot k_2x_2, \ \mathrm{откуда}\ x_2 = \dfrac{mg}{2k_2} = \dfrac{mg}{2\frac{mg}{x_0/2}} = \dfrac{x_0}{4} = 1\ \mathrm{см}.\]
Анализируя законы Кеплера, описывающие движение планет, И. Ньютон в 1667 году пришёл к открытию закона всемирного тяготения:
`F=G(Mm)/R^2`
где `G` - гравитационная постоянная.
Все тела во Вселенной взаимно притягиваются друг к другу с силами прямо пропорциональными произведению их масс и обратно пропорциональными квадрату расстояния между ними.
В такой форме закон справедлив только для двух тел, которые можно считать материальными точками. Однако можно доказать, что для двух однородных тел шарообразной формы эта форма записи закона тоже справедлива.
Измерить величину гравитационной постоянной удалось английскому физику Г. Кавендишу в 1798 году.
С помощью крутильных весов и свинцовых шаров ему удалось получить значение гравитационной постоянной:
`G=6,67259*10^(-11)("H""м"^2)/"кг"^2`.
Второй закон Ньютона позволяет записать для силы, с которой тело притягивается к Земле: `F=G(Mm)/(R^2)=mg`, тогда `g=GM/R^2` - ускорение свободного падения на поверхности Земли (измерено Галилеем и Ньютоном), на расстоянии, большем радиуса на величину `h`, ускорение свободного падения находится по формуле:
`g=GM/((R+h)^2)` - ускорение свободного падения на высоте `h` от поверхности Земли.
называют силу, с которой тело притягивается к планете
`F=mg` - сила тяжести.
называют силу упругости, с которой тело действует на опору и подвес.
Рассмотрим твёрдое тело, расположенное на горизонтальной неподвижной опоре: под действием силы тяжести тело деформируется. Если тело находится на опоре, то на нижний слой действуют все верхние слои, и, как следствие, этот слой деформируется наибольшим образом. На предпоследний слой действует меньшее количество слоёв, и он деформируется меньше. Таким образом, тело, бывшее прямоугольным, примет вид трапеции. Нижний слой приблизился при такой деформации к центру тела, а значит, возникла сила упругости, направленная в сторону, противоположную направлению смещения частиц при деформации. Сила упругости, возникшая внутри данного тела, направлена перпендикулярно опоре. Эту силу, созданную деформированным телом и приложенную к опоре, называют весом тела. Опора под действием веса деформируется. Противоположная весу сила упругости действует на данное тело со стороны деформированной опоры и тоже направлена перпендикулярно опоре, но называется силой реакции опоры `N` (от слова normal - перпендикуляр).
На рисунке 9 тело не касается опоры для того, чтобы показать, что вес приложен к опоре, а сила реакции опоры к телу. В действительности площадь реального соприкосновения твёрдых тел невелика. Большей частью между телами находится тонкий слой воздуха.
Вполне очевидно, что если опоры нет, то и веса тело иметь не будет. Такое случится в том случае, если тело движется под действием только одной силы - силы тяготения.
называют состояние тела, когда оно движется под действием только силы тяготения.
Также легко понять, что если на тело действует две силы (сила тяжести и сила реакции опоры), то эти силы не обязательно равны друг другу. Одна из них может быть больше другой.
Рассмотрим движение тела, помещённого в лифт. Пусть сам лифт движется с ускорением `veca`.
Такое ускорение будет в двух случаях:
1) лифт поднимается равноускорено,
2) лифт опускается равнозамедленно.
Второй закон Ньютона для данного тела примет вид:
`vecN+mvecg=mveca`.
При рассмотрении данного движения из лабораторной неподвижной системы отсчёта `Oy` увидим, что в проекции на вертикальную ось `Oy` второй закон запишется следующим образом:
`N-mg=ma`,
откуда
`N=ma+mg=m(g+a)`.
Но по третьему закону Ньютона знаем, что сила реакции опоры и вес тела равны и противоположны, следовательно:
`N=P`,
тогда:
`P=m(g+a)` - вес тела, движущегося с ускорением, направленным вверх (рис. 10).
Не трудно проследить за тем, что мы получим, если ускорение тела будет направлено вниз.
В проекции на ось `Oy` ускорение проецируется со знаком «`-`», что даст окончательную формулу для веса:
`P=m(g-a)` - вес тела, движущегося с ускорением, направленным вниз.
Или в общем случае:
`P=m(g+-a)` - вес тела, движущегося с ускорением.
Подобным образом можно получить выражение для веса тела, движущегося равномерно по выпуклому участку дороги.
`P=m(g-a)=m(g-v^2/R)` - вес тела, движущегося с ускорением, направленным вниз (выпуклая дорога).
`P=m(g+a)=m(g+v^2/R)` - вес тела, движущегося с ускорением, направленным вверх (вогнутая дорога).
Важное дополнение:
Для рассматриваемой силы, называемой весом, важно понимать и уметь правильно изображать точку приложения этой силы.
На рисунке 11а показан лифт, у которого нет ускорения. Тогда сила тяжести равна силе реакции опоры. А по третьему закону Ньютона, сила реакции опоры равна весу тела. Точка приложения силы тяжести расположена в геометрическом центре тела, если тело однородно и правильной формы. Точка приложения силы реакции опоры должна быть изображена внутри тела вблизи с нижней поверхностью тела на линии действия силы тяжести. Последнее свойство на рисунке не выдержано для удобства изображения (иначе силы на рисунке будут накладываться друг на друга). Точка приложения веса тела находится внутри опоры (пола лифта) вблизи поверхности на линии действия силы реакции опоры.
На рисунке 11б ускорение лифта направлено вниз. Тогда сила реакции опоры меньше силы тяжести. А вес снова равен силе реакции опоры.
На рисунке 11в ускорение лифта направлено верх. Тогда сила реакции опоры больше силы тяжести. А вес снова равен силе реакции опоры.
Определить среднюю плотность Солнца, если его масса равна `2*10^(30)` кг, а ускорение свободного падения на поверхности приблизительно составляет `273,1 "м"//"с"^2`.
Так как `g=GM/R^2`, то можем найти радиус Солнца: `R=sqrt((GM)/g)`. Считая Солнце шаром найденного радиуса и известной массы, можем найти среднюю плотность.
`rho=M/V=M/(4/3piR^3)=(3M)/(4pi((GM)/g)^(3/2))= 3/(4pisqrtM)(g/G)^(3/2)`.
Количественно ответ будет таким: `rho=1400 "кг"//"м"^3`. Однако следует отметить, что этот ответ таков в данной модели. В действительности плотность Солнца не одинакова в недрах светила, и является функцией расстояния от центра. Мы же посчитали её везде одинаковой.
На сколько изменится сила притяжения двух одинаковых шаров, изготовленных из одинакового вещества плотностью `rho`, если у одного из них создать полость сферической формы, расположенную внутри одного из них в его центре? Изначально шары касались друг друга и притягивались с силой `80` Н. Радиус полости равен половине радиуса шара (рис. 12).
Сила взаимодействия определяется законом всемирного тяготения. Т. к. формы тел шарообразные, то мы можем применить известную формулу закона:
`F_1=G(Mm)/R^2`.
Массы тел равны, обозначим их `m`. Масса извлечённой части
`m_0=4/3pi(R/2)^3rho=1/8m`.
Новая сила будет меньше первоначальной на величину силы взаимодействия извлечённой части с первым шаром (принцип суперпозиции сил). Следовательно:
`F_2=G(m_0m)/((2R)^2)=G(1/8mm)/((2R)^2)=1/8G(mm)/((2R)^2)=1/8F=10` H.
Сила притяжения шаров станет меньше на `10` Н, следовательно, станет равной `70` Н.
сила механического сопротивления, возникающая в плоскости соприкосновения двух прижатых друг к другу тел при их относительном перемещении.
Сила сопротивления, действующая на тело, направлена противоположно относительному перемещению данного тела.
Сила трения возникает по двум причинам:
1) первая и основная причина заключается в том, что в местах соприкосновения молекулы веществ притягиваются друг к другу, и для преодоления их притяжения требуется совершить работу. Соприкасающиеся поверхности касаются друг друга лишь в очень небольших по площади местах. Их суммарная площадь составляет `0,01-:0,001` от общей (кажущейся) площади соприкосновения. При скольжении площадь реального соприкосновения не остается неизменной. Сила трения (скольжения) будет изменяться в процессе движения. Если тело, которое скользит, прижать сильнее к телу, по которому происходит скольжение, то вследствие деформации тел площадь пятен соприкосновения (и сила трения) увеличится пропорционально прижимающей силе.
`F_"тр"~F_"приж"`
2) вторая причина возникновения силы трения – это наличие шероховатостей (неровностей) поверхностей, и деформация их при движении одного тела по поверхности другого. Глубина проникновения (зацепления) шероховатостей зависит от прижимающей силы, а от этого зависит и величина деформаций. Последние, в свою очередь, определяют величину силы трения: `F_"тр"~F_"приж"`.
При относительном скольжении обе причины имеют место, потому характер взаимодействия имеет вид простого соотношения:
`F_"тр"=muN` – сила трения скольжения (формула Кулона – Амонтона), где
`mu` – коэффициент трения скольжения,
`N` – сила реакции опоры, равная прижимающей силе.
Величина коэффициента трения различна для разных комбинаций трущихся веществ даже при одинаковой их обработке (силы притяжения и упругие свойства зависят от рода вещества).
Если между трущимися поверхностями будет находится смазка, то сила притяжения изменится заметным образом (будут притягиваться другие молекулы, и сила трения скольжения частично заменится силой вязкого трения, которую мы рассмотрим ниже).
Если на тело, лежащее на горизонтальной поверхности, действует горизонтальная сила `vecF`, то движение будет вызвано этой силой только в том случае, когда она станет больше некоторого значения `(muN)`. До начала движения внешняя сила скомпенсирована силой трения покоя. Сила трения покоя всегда равна внешней силе, параллельной поверхности, и возникает по причине притяжения между молекулами в областях пятен соприкосновения, и деформации шероховатостей.
Сила трения покоя различна в разных участках поверхности, по которой будет происходить движение. Если тело долго лежит на поверхности, то вследствие вибраций (они всегда присутствуют на поверхности Земли) площадь пятен соприкосновения незначительно увеличится. Поэтому для начала движения придётся преодолеть немного большую силу трения, чем сила трения скольжения. Данное явление называется явлением застоя. С этим явлением мы сталкиваемся, например, передвигая мебель в комнате. (На рисунке 13 превосходство трения покоя над трением скольжения сильно преувеличено).
Силой трения покоя мы пользуемся для перемещения на лыжах или просто при ходьбе.
Рассмотренные виды силы трения относятся к сухому трению или внешнему. Но есть еще один вид силы трения – вязкое трение.
При движении тела в жидкости или газе происходят достаточно сложные процессы обмена молекулами между слоями обтекающей жидкости или газа. Эти процессы называют процессами переноса.
При небольших скоростях движения тела относительно газа или жидкости сила сопротивления будет определяться выражением:
`F_"тр"=6pietarv` – закон Стокса для шара, где
`eta` - вязкость вещества, в котором движется тело;
`r` - средний поперечный размер (радиус) тела;
`v` - относительная скорость тела;
`6pi` - коэффициент, соответствующий сферической форме тела.
Вывод о величине скорости (большая она или маленькая) можно сделать, определив безразмерный коэффициент, называемый числом Рейнольдса:
`Re=(rhorv)/eta` - число Рейнольдса, где
`rho` - плотность вещества, в которой движется тело.
Если `Re<1700`, то движение газа (жидкости) вокруг тела ламинарное (слоистое), и скорости можно считать малыми.
Если `Re>1700`, то движение газа (жидкости) вокруг тела турбулентное (с завихрениями), и скорости можно считать большими.
В последнем случае на образование вихрей тратится большая часть кинетической энергии тела, а значит, сила трения становится большей, а зависимость перестаёт быть линейной.
`F_"тр"=kv^2rhoS` - сила вязкого трения при больших скоростях, где
`S` - площадь поперечного сечения тела,
`k` - постоянная величина, зависящая от поперечных размеров тела.
Часто последнюю формулу можно видеть в виде:
`F_"тр"=betav^2`.
Число Рейнольдса, выбранное равным `1700`, в действительности определяется конкретной задачей (условиями) и может принимать другие значения того же порядка. Объясняется это тем, что зависимость силы вязкого трения от скорости носит сложный характер: при некотором значении скорости `v_1` линейная зависимость начинает нарушаться, а при некотором значении скорости `v_2` эта зависимость становится квадратичной. В промежутке от `v_1` до `v_2` степень принимает дробные значения (рис. 14). Число Рейнольдса характеризует состояние динамической системы, при котором движение слоёв остаётся ламинарным, и сильно зависит от внешних условий. К примеру: стальной шар, двигаясь в воде вдали от границ жидкости (в океане, озере) сохраняет ламинарным движение слоёв при `Re=1700`, а тот же шар, движущийся в вертикальной трубе немного большего, чем шар, радиуса, заполненной водой, уже при `Re=2` вызовет появление завихрений воды вокруг шара. (Отметим, что число Рейнольдса не единственное, применяемое для описания подобного движения. Например, применяют ещё числа Фруда и Маха.)
Из-за такой сложной зависимости силы сопротивления от размеров, формы тела и его скорости рассчитать с необходимой точностью силу сопротивления невозможно. Потому приходится создавать макеты летательных аппаратов и измерять силу сопротивления опытным путём, продувая воздух в аэродинамических трубах.
Сила сопротивления воздуха, действующая на капли тумана, пропорциональна произведению скорости на радиус капель: `F=krv`. Капли радиуса `0,1` мм, падая с большой высоты, у земли имеют скорость около `1` м/с. Какую скорость будут иметь капли, радиус которых в два раза меньше? В десять раз меньше?
Капля падает с постоянной скоростью, т. к. сила тяжести скомпенсирована силой вязкого трения о воздух: `krv=mg` или `krv=rho 4/3 pir^3g`, откуда `v=(4rho pig)/(3k)r^2`.
Из полученного результата следует, что скорость капли прямо пропорциональна квадрату радиуса. Если радиус капли уменьшится в два раза, то скорость её падения уменьшится в четыре раза, и составит `v_1~~0,25` м/с; а если радиус окажется в десять раз меньше, то скорость будет в сто раз меньше, т. е. `v_2~~0,01` м/с.
Задача любопытна тем, что может объяснить почему облака не падают. Ведь облака – это туман, который не падает из-за наличия восходящих потоков воздуха. На нижней границе облака находятся наиболее крупные капли. Поднимаясь, скорость потока уменьшается, т. к. он совершает работу над встретившимся воздухом и увеличивает свою потенциальную энергию. Раз скорость потока в верхней части облака меньше, то и размер капель там тоже меньше. Капли «висят» над поверхностью земли на постоянной высоте.
Какие силы действуют на человека во время ходьбы? Какая сила приводит его в движение?
На человека всегда действует сила тяжести `(mvecg)`. Она приложена ко всем частям организма, но принято её изображать приложенной к центру масс (на рис. 15 это не так). Во время ходьбы человек мышечными усилиями толкает ногу назад, относительно центра масс (туловища). На рисунке эта сила обозначена как `vecF_"м"`. Нога бы начала такое движение, если бы не было сцепления протектора подошвы и поверхности асфальта (пола). Вдоль поверхности возникает сила трения покоя. Нога толкает этой силой асфальт влево `(vecF_"тр")`, а асфальт толкает ногу вправо `(vecF_"тр")`, приводя её в движение относительно асфальта. Человек оказывает на поверхность асфальта действие, называемое весом `(vecP)`, а на человека действует противоположная сила реакции опоры `(vecN)`.
С каким ускорением будет двигаться тело массой `3` кг по поверхности стола с коэффициентом трения `0,3`, если к нему приложить силу `10` Н под углом `30^@` к горизонту?
Расставим силы. При расстановке сил пользуются, преимущественно, двумя моделями: 1) все силы прикладывают к центру масс тела, который символизирует материальную точку, в качестве которой рассматривается тело; 2) точки приложения сил изображают там, где сила приложена. Во втором случае требуется применять ряд дополнительных правил, которые на первых порах излишне усложняют решение. На данном рисунке 16 применены правила первой модели.
Далее запишем 2-ой закон Ньютона в векторной форме:
`mvecg+vecF_"тр"+vecN+vecF=mveca`.
Теперь пишем проекции этого уравнения на оси `Ox` и `Oy`.
Отметим, что оси удобнее всего выбирать из принципа удобства, что чаще всего соответствует направлению одной из осей вдоль ускорения, а второй оси перпендикулярно первой. Ели движутся несколько тел, то для каждого тела можно выбирать свою удобную пару осей.
`Ox: -F_"тр"+Fcosalpha=ma`,
`Oy: -mg+N+Fsinalpha=0`.
Вспомогательное уравнение (формула Кулона – Амонтона)
`F_"тр"=mu*N`.
Решая скалярную тройку уравнений, получим:
`a=F/m(mu*sinalpha+cosalpha)-mug`.
Подставим числовые значения и получим: `a~~0,39 "м"/"с"^2`.
При достаточной тренировке в решении задач запись в векторном виде становится излишней, и пишем сразу проекции на оси. На начальном этапе обучения пропускать эту запись не следует.
По наклонной плоскости с углом наклона при основании `alpha=30^@` соскальзывает тело. Найти ускорение тела при коэффициенте трения поверхности и тела, равным `0,2`.
На рисунке 17 расставим силы и выберем оси координат из принципа удобства (одна из осей вдоль ускорения).
Запишем уравнение второго закона Ньютона в векторном виде:
`mvecg+vecF_"тр"+vecN=mveca`.
Далее проецируем его на оси координат:
`Ox: -F_"тр"+mg*sinalpha=ma`,
`Oy: -mg*cosalpha+N=0`.
Добавим формулу Кулона – Амонтона:
`F_"тр"=muN`.
Решая систему уравнений, получим:
`a=g(sinalpha=mucosalpha)`.
Числовой ответ даёт значение `a~~3,27 "м"/"с"^2`.
Рассмотрим способ с другими направлениями осей (рис. 18) (неудобными):
`Ox: -F_"тр"*cosalpha+N*sinalpha=ma*cosalpha`,
`Oy: -mg+N*cosalpha=-a*sinalpha`.
Добавим формулу Кулона – Амонтона: `F_"тр"=muN`.
Решение этой системы уравнений так же приведёт к тому же ответу (проверьте самостоятельно), но путь достижения цели будет и длиннее, и сложнее.
Пример показывает рациональность предлагаемого принципа удобства.
Коэффициент трения между резиной и асфальтом `0,7`. Какой должна быть ширина дороги, чтобы на ней смог развернуться мотоциклист без уменьшения скорости, если его скорость равна `54` км/ч?
Если мотоциклист планирует развернуться, не уменьшая скорости, то движение его будет равномерным по окружности. Сила, приводящая к изменению направления скорости, будет сообщать центростремительное (нормальное) ускорение (рис. 19). Этой силой будет сила трения.
Выберем ось `Ox` вдоль ускорения (рис. 20). Запишем 2-й закон Ньютона в проекции на эту ось:
`F_"тр"=ma_n=mv^2/R`.
Так как `F_"тр"=muN`, а `N=mg`, то `mumg=mv^2/R`, откуда `R=v^2/(mug)`, тогда для разворота нужна ширина
`l=2R`; `l=(2v^2)/(mug)`; `l=64,3` м.
Из ответа видим, что для разворота на реальной дороге необходимо снизить скорость.
Два тела массами `m_1=2` кг `m_2=3` кг связаны нитью. Первое тело тянут вправо с силой `F=15` H по поверхности с коэффициентом трения `mu=0,1`. Определите силу натяжения нити, связывающей тела. С каким ускорением движутся тела? Оборвётся ли нить, если поместить тела на поверхность с коэффициентом трения `0,3`, а максимальная сила натяжения нити `10` Н?
Расставим силы, действующие на тела (рис. 21):
Выберем ось `Ox` вдоль силы `vecF` и ось `Oy` перпендикулярно ей.
Второй закон Ньютона для двух тел в проекции на ось `Ox`:
`F-F_("тр"1)-T+T-F_("тр"2)=(m_1+m_2)a`,
для первого тела на ось `Oy`:
`N_1-m_1g=0`, тогда `F_("тр"1)=mum_1g`;
для второго тела:
`N_2-m_2g=0`, тогда `F_("тр"2)=mum_2g`;
Выразим ускорение из проекции `Ox` подставляя силы трения:
`a=F/(m_1+m_2)-mug`,
`a=2"м"/"с"^2`.
Теперь запишем второй закон Ньютона для второго тела:
`Ox`: `T-F_("тр"2)=m_2a`,
откуда `T=F_("тр"2)=m_2a`,
`T=m_2(mug+a)`,
`T=m_2/(m_1+m_2)F=9`H.
Если `mu=0,3`, то `a=0`, тела движутся равномерно, а сила натяжения нити останется прежней, `T=9 "H"<10 "H"`. Нить не порвётся.
На вершине наклонной плоскости, с углом при основании `30^@` укреплён неподвижный блок. Через блок перекинута невесомая и нерастяжимая нить. К нити привязаны два тела: `m_1=3` кг со стороны плоскости и `m_2=4` кг с другой. Коэффициент трения при движении тела по поверхности равен `0,2`. Какова сила натяжения нити и ускорения тел?
Силы, действующие на тела, представлены на рисунке 22.
Запишем 2-й закон Ньютона для первого тела в проекциях:
`Ox:` `T_1-F_"тр"-m_1gsinalpha=m_1a_1`,
`Oy:` `N-m_1gcosalpha=0`.
С учётом, что `F_"тр"=muN`, получим `T_1=mum_1gcosalpha-m_1gsinalpha=m_1a_1`.
Для второго тела в проекции на `Oz:`
`m_2g-T_2=m_2a_2`.
Решая совместно два уравнения, получим (учитывая, что `a_1=a_2=a` и `T_1=T_2=T`)
`a=(m_2-m_1sinalpha-mum_1cosalpha)/(m_1+m_2)g`,
`a~~2,83 "м"//"с"^2`.
Из этих же уравнений получим силу натяжения нити:
`T=g (m_1m_2)/(m_1+m_2)(1+sinalpha+mucosalpha)`
`T~~28,7 "H"`.
Какую горизонтальную силу `F` нужно приложить к тележке массой `M`, чтобы бруски массой `2m` и `3m` (рис. 23) относительно неё не двигались? Трением пренебречь.
На рисунке 24 изображены силы, действующие на тела.
Если трения нет и бруски неподвижны относительно тележки, то 2-й закон Ньютона в проекциях для тел примет вид:
1) для тележки:
`Ox:` `F-P_1-T_4=Ma_0`,
`Oy:` `N_1+N_2-Mg_P_2-T_3=0`;
2) для бруска `3m:`
`Ox:` `T_2=3ma_2`,
`Oy:` `N_3-3mg=0`,
`N_3=P_2`;
3) для бруска `2m:`
`Ox:` `N_4=2ma_1`,
`Oy:` `T_1-2mg=0`,
`N_4=P_1`;
4) `T_1=T_2=T_3=T_4` (неть невесома),
5) `a_1=a_2=a_0` (нить нерастяжима).
Решая совместно, получим `F=a_0(M+5m)`.
Рассматривая уравнения двух брусков совместно, получим
`3ma_0=2mg` или `a_0=2/3g`.
Тогда `F=2/3g(M+5m)`.
Горизонтальный диск вращают с угловой скоростью `omega=20` рад/с вокруг вертикальной оси `OO^'` (рис. 25). На поверхности диска в гладкой радиальной канавке находятся грузы `1` и `2` массами `m_1=0,2` кг и `m_2=0,1` кг радиусы их вращения `R_1=0,1` м, `R_2=0,2` м. Найти силы натяжения нитей.
Рассмотрим силы, действующие на тела, и ускорения тел (рис. 26).
Уравнение 2-го закона в проекциях имеет вид:
1) `T_1-T_2=m_1omega^2R_1`.
2) `T_2=m_2omega^2R_1`.
`T_1=T_2+m_1omega^2R_1=omega^2(m_1R_1+m_2R_1)`.
`T_1=16"H"`.
`T_2=8"H"`.
Два небольших по размерам груза с массами `3m` и `m` связаны нитью длиной `l_2` и прикреплены к оси `O O_1` нитью длиной `l_1`, составляющей угол `beta` с осью `O O_1` (см. рис. 27). Грузы находятся на горизонтальной платформе и вращаются вместе с ней вокруг вертикальной оси `O O_1`. При какой постоянной угловой скорости грузы будут давить на платформу с одной и той же силой? Трение между грузами и платформой пренебрежимо мало.
На рисунке 28 изображены силы, действующие на грузы.
Для первого груза уравнения 2-го Закона Ньютона в проекции имеют вид:
`Ox:` `T_1=momega^2(l_2+l_1sinbeta)`;
`Oy:` `N_1=mg`,
`N_1=P_1`;
Для второго груза:
`OX:` `T_3sinbeta-T_2=3momega^2l_1sinbeta`
`OY:` `T_3cosbeta+N_2=3mg`
`N_2=P_2`
`P_1=P_2` (по условию),
`T_1=T_2` (нить невесома).
Из равенства `P_1=P_2` следует `N_1=N_2`, поэтому `T_3=(2mg)/(cosbeta)`.
Тогда из проекции на `Ox` следует:
`2mg"tg"beta=momega^2 (l_2+l_1sinbeta+3l_1sinbeta)`
`omega=sqrt((2g"tg"beta)/(l_2+4l_1sinbeta))`.
Найдите ускорения тел системы, изображённой на рисунке 29. Сила `F` приложена по направлению нити к одному из тел массы `m`. Участки нити по обе стороны от лёгкого блока, прикреплённого к телу массы `M`, параллельны.
Силы, действующие на тела, изображены на рисунке 30.
Для первого тела
`Ox:` `F-T=ma_1` (1)
Для второго тела:
`Ox:` `-T=-ma_2` (2)
Для третьего тела:
`Ox:` `2T=Ma_3` (3)
Т. к. нить нерастяжима, то смещение второго тела к блоку `(l_2)` равно смещению первого тела от блока `(l_1)`. Т. к. блок сам смещается с ускорением, то к смещению первого блока добавится смещение `2l_3`:
`a_1=a_2+2a_3`. (4)
Из (2) и (3) следует `a_2=a_3 M/(2m)`.
Тогда, решая совместно (1), (4) и (2), получим
`a_3=F/(M+2m)`,
тогда
`a_2=F/((M+2m))*M/(2m)` и `a_1=(F/(M+2m))((M+4m)/(2m))`.
В предыдущем задании по физике механическое движение было определено как всякое изменение положения тел или их частей в пространстве относительно друг друга с течением времени. Следовательно, чтобы узнать, движется ли конкретное тело и как оно движется, необходимо указать, относительно каких тел (объектов) рассматривается это движение. Тела, относительно которых рассматривается изучаемое движение, называются телами отсчёта, а само движение при этом является относительным.
В то же время выбор одного лишь тела отсчёта не даёт возможности полностью описать изучаемое движение, поэтому с телом отсчёта связывают так называемую систему координат, а отсчёт времени ведут с помощью часов, наличие которых предполагается изначально. Выбор той или иной системы координат для решения конкретной задачи осуществляется по соображениям удобства. Наиболее привычной и распространённой для нас является декартова прямоугольная система координат, с которой мы и будем работать в дальнейшем. Тело отсчёта и связанная с ним система координат в совокупности с часами для отсчёта времени образуют систему отсчёта.
Реальные движения тел порой так сложны, что при их изучении необходимо постараться пренебречь несущественными для рассмотрения деталями. С этой целью в физике прибегают к моделированию, т. е. к составлению упрощённой схемы (модели) явления, позволяющей понять его основную суть, не отвлекаясь на второстепенные обстоятельства. Среди общепринятых физических моделей важную роль в механике играют модель материальной точки и модель абсолютно твёрдого тела.
Материальная точка – это тело, геометрическими размерами которого в условиях задачи можно пренебречь и считать, что вся масса тела сосредоточена в геометрической точке.
Абсолютно твёрдое тело (просто твёрдое тело) – это система, состоящая из совокупности материальных точек, расстояния между которыми в условиях задачи можно считать неизменными.
Модель материальной точки применима прежде всего в случаях, когда размеры тела много меньше других характерных размеров в условиях конкретной задачи. Например, можно пренебречь размерами искусственного спутника по сравнению с расстоянием до Земли и рассматривать спутник как материальную точку. Это – верно! Но вместе с тем не стоит ограничиваться лишь подобными случаями.
Дело в том, что сложное движение реального тела можно «разложить» на два простых вида движения: поступательное и вращательное (см. Задание №1). Если при сложном движении заменить тело материальной точкой, то мы исключим из рассмотрения вращение тела, т. к. говорить о вращении точки вокруг самой себя бессмысленно (точка не имеет геометрических размеров). Следовательно, заменив тело материальной точкой при сложном движении, мы допустим ошибку. Однако часто в случаях, когда тело движется поступательно, не вращаясь, его можно считать материальной точкой независимо от размеров, формы и пройденного им пути.
Модель абсолютно твёрдого тела можно применять, когда в условиях рассматриваемой задачи деформации реального тела пренебрежимо малы. Так, например, в задании, посвящённом вопросам статики (Задание №4), мы будем изучать условия равновесия твёрдого тела и при решении задач часто применять указанную модель. Вместе с тем, данная модель неуместна, если суть задачи состоит, например, в изучении деформаций тела в результате тех или иных воздействий в процессе его движения или в состоянии покоя.
Таким образом, мы будем изучать механическое движение не самих реальных тел, а упомянутых выше моделей. Из них основной и наиболее употребимой для нас станет модель материальной точки. В то же время там, где это необходимо, мы будем ради наглядности изображать на рисунках тела не в виде точек, а в виде объектов, геометрические размеры которых не равны нулю.
Изучая физику, часто приходится использовать понятие изменения физической величины. При этом следует иметь в виду, что изменение какой-либо физической величины можно характеризовать либо её приращением, либо убылью. Приращением называется разность конечного и начального значений этой величины, в то время как убыль, напротив, представляет собой разность начального и конечного её значений.
Иными словами, убыль и приращение отличаются знаком. Мы чаще будем пользоваться понятием приращения и обозначать его в соответствии со сложившейся традицией с помощью греческой буквы «дельта»: `Delta`.
Таким образом, если этот символ стоит перед обозначением какой-либо векторной или скалярной величины, то такое выражение означает приращение соответствующей величины.
Так, выражение `Deltavec A` означает приращение вектора , а выражение `Delta x` - приращение скалярной величины . Вместе с тем во избежание недоразумений следует проявлять известную осторожность при использовании символа `Delta`. Например, убедитесь самостоятельно, что, вообще говоря, `|DeltavecA|!=Delta|vecA|`, хотя в некоторых частных случаях возможно равенство.
В кинематике существуют три способа аналитического описания движения материальной точки в пространстве. Рассмотрим их, ограничившись случаем движения материальной точки на плоскости, что позволит нам при выборе системы отсчёта задавать лишь две координатные оси.
1. Векторный способ.
В этом способе положение материальной точки `A` задаётся с помощью так называемого радиус-вектора `vecr`, который представляет собой вектор, проведённый из точки `O`, соответствующей началу отсчёта выбранной системы координат, в интересующую нас точку `A` (рис. 1). В процессе движения материальной точки её радиус-вектор может изменяться как по модулю, так и по направлению, являясь функцией времени `vecr=vecr(t)`.
Геометрическое место концов радиус-вектора `vecr(t)` называют траекторией точки `A`.
В известном смысле траектория движения представляет собой след (явный или воображаемый), который «оставляет за собой» точка `A` после прохождения той или иной области пространства. Понятно, что геометрическая форма траектории зависит от выбора системы отсчёта, относительно которой ведётся наблюдение за движением точки.
Пусть в процессе движения по некоторой траектории в выбранной системе отсчёта за промежуток времени `Delta t` тело (точка `A`) переместилось из начального положения `1` с радиус-вектором `vec r_1` в конечное положение `2` с радиус-вектором `vec r_2` (рис. 2). Приращение `Deltavec r` радиус-вектора тела в таком случае равно: `Deltavec r = vec r_2- vec r_1`.
Вектор `Deltavec r`, соединяющий начальное и конечное положения тела, называют перемещением тела.
Отношение `Delta vec r//Delta t` называют средней скоростью (средним вектором скорости) `vec v_"cp"` тела за время `Delta t`:
`vecv_"cp"=(Deltavecr)/(Delta t)` (1)
Вектор `vecv_"cp"` коллинеарен и сонаправлен с вектором `Deltavec r`, так как отличается от последнего лишь скалярным неотрицательным множителем `1//Delta t`.
Предложенное определение средней скорости справедливо для любых значений `Delta t`, кроме `Delta t=0`. Однако ничто не мешает брать промежуток времени `Delta t` сколь угодно малым, но отличным от нуля.
Для точного описания движения вводят понятие мгновенной скорости, то есть скорости в конкретный момент времени `t` или в конкретной точке траектории. С этой целью промежуток времени `Delta t` устремляют к нулю. Вместе с ним будет стремиться к нулю и перемещение `Delta vec r`. При этом отношение `Deltavec r//Delta t` стремится к определённому значению, не зависящему от `Delta t`.
Величина, к которой стремится отношение `Deltavec r//Delta t` при стремлении `Delta t` к нулю, называется мгновенной скоростью`vec v`:
`vec v =(Delta vec r)/(Delta t)` при `Delta t -> 0`.
Теперь заметим, что чем меньше `Delta t`, тем ближе направление `Deltavec r` к направлению касательной к траектории в данной точке. Следовательно, вектор мгновенной скорости направлен по касательной к траектории в данной точке в сторону движения тела.
В дальнейшем там, где это не повлечёт недоразумений, мы будем опускать прилагательное «мгновенная» и говорить просто о скорости `vec v` тела (материальной точки).
Движение тела принято характеризовать также ускорением, по которому судят об изменении скорости в процессе движения. Его определяют через отношение приращения вектора скорости `Delta vec v` тела к промежутку времени `Delta t`, в течение которого это приращение произошло.
Ускорением `veca` тела называется величина, к которой стремится отношение `Delta vec v//Delta t` при стремлении к нулю знаменателя `Delta t`:
`vec a =(Delta vec v)/(Delta t)` при `Delta t -> 0` (2)
При уменьшении `Delta t` ориентация вектора`Delta vec v` будет приближаться к определённому направлению, которое принимается за направление вектора ускорения `vec a`. Заметим, что ускорение направлено в сторону малого приращения скорости, а не в сторону самой скорости!
Таким образом, зная зависимость `vec r(t)`, можно найти скорость `vec v` и ускорение $$ \overrightarrow{a}$$ тела в каждый момент времени. В этой связи возникает и обратная задача о нахождении скорости `vec v (t)` и радиус-вектора `vec t (t)` по известной зависимости от времени ускорения `vec a`. Для однозначного решения этой задачи необходимо знать начальные условия, т. е. скорость `vec v_0` и радиус-вектор `vec r_0` тела в начальный момент времени $$ t=0$$.
Напомним, что в системе СИ единицами длины, скорости и ускорения являются соответственно метр (м), метр в секунду (`"м"//"с"`) и метр на секунду в квадрате ( `"м"//"с"^2`).
2. Координатный способ.
В этом способе положение материальной точки `A` на плоскости в произвольный момент времени `t` определяется двумя координатами `x` и `y`, которые представляют собой проекции радиус-вектора $$ \overrightarrow{r}$$тела на оси `Ox` и `Oy` соответственно (рис. 3). При движении тела его координаты изменяются со временем, т. е. являются функциями `t`: $$ x=x\left(t\right)$$ и $$ y=y\left(t\right)$$. Если эти функции известны, то они определяют положение тела на плоскости в любой момент времени. В свою очередь, вектор скорости $$ \overrightarrow{v}$$ можно спроецировать на оси координат и определить таким образом скорости $$ {v}_{x}$$ и $$ {x}_{y}$$ изменения координат тела (рис. 4). В самом деле $$ {v}_{x}$$ и $$ {v}_{y}$$ будут равны значениям, к которым стремятся соответственно отношения `Delta x//Delta t` и `Delta y//Delta t` при стремлении к нулю промежутка времени `Delta t`.
Аналогично с помощью проецирования вектора $$ \overrightarrow{a}$$ определяются ускорения $$ {a}_{x}$$ и $$ {a}_{y}$$ тела по направлениям координатных осей.
Таким образом, зная зависимости $$ x\left(t\right)$$ и $$ y\left(t\right)$$ ,можно найти не только положение тела, но и проекции его скорости и ускорения, а следовательно, модуль и направление векторов $$ \overrightarrow{v}$$ и $$ \overrightarrow{a}$$в любой момент времени. Например, модуль вектора скорости будет равен `v=sqrt(v_x^2+v_y^2)`, а его направление может быть задано углом между этим вектором и любой осью координат. Так, угол $$ \alpha $$ между вектором $$ \overrightarrow{v}$$ и осью `Ox` определяется отношением `"tg"alpha=v_y//v_x`. Аналогичными формулами определяются модуль и направление вектора $$ \overrightarrow{a}$$.
Обратная задача – нахождение скорости и зависимостей $$ x\left(t\right)$$ и $$ y\left(t\right)$$ по заданному ускорению – будет иметь однозначное решение, если кроме ускорения заданы ещё и начальные условия: проекции скорости и координаты точки в начальный момент времени $$ t=0$$.
3. Естественный (или траекторный) способ.
Этот способ применяют тогда, когда траектория материальной точки известна заранее. На заданной траектории `LM` (рис. 5) выбирают начало отсчёта – неподвижную точку `O`, а положение движущейся материальной точки `A` определяют при помощи так называемой дуговой координаты `l`, которая представляет собой расстояние вдоль траектории от выбранного начала отсчёта `O` до точки `A`. При этом положительное направление отсчёта координаты `l` выбирают произвольно, по соображениям удобства, например так, как показано стрелкой на рис. 5.
Движение тела определено, если известны его траектория, начало отсчёта `O`, положительное направление отсчёта дуговой координаты `l` и зависимость $$ l\left(t\right)$$.
Следующие два важных механических понятия – это пройденный путь и средняя путевая скорость.
По определению, путь `Delta S` - это длина участка траектории, пройденного телом за промежуток времени `Delta t`.
Ясно, что пройденный путь – величина скалярная и неотрицательная, а потому его нельзя сравнивать с перемещением `Delta vec r`, представляющим собой вектор. Сравнивать можно только путь `Delta S` и модуль перемещения `
|Delta vecr|`. Очевидно, что `Delta S >=|Deltavec r|`.
Средней путевой скоростью `v_"cp"` тела называют отношение пути `Delta S` к промежутку времени `Delta t`, в течение которого этот путь был пройден:
`v_"cp"=(Delta S)/(Delta t)` (3)
Определённая ранее средняя скорость `v_"cp"` (см. формулу (1)) и средняя путевая скорость отличаются друг от друга так же, как `Deltavec r` отличается от `Delta S`, но при этом важно понимать, что обе средние скорости имеют смысл только тогда, когда указан промежуток времени усреднения `Delta t`. Само слово «средняя» означает усреднение по времени.
Городской троллейбус утром вышел на маршрут, а через 8часов, проехав в общей сложности `72` км, возвратился в парк и занял своё обычное место на стоянке. Какова средняя скорость `vec v_"cp"` и средняя путевая скорость `v_"cp"` троллейбуса?
Поскольку начальное и конечное положения троллейбуса совпадают, то его перемещение `Delta vecr` равно нулю: `Deltavecr=0`, следовательно, `vecv_"ср"=Deltavecr//Deltat=0` и `|vecv_"ср"|=0`. Но средняя путевая скорость троллейбуса не равна нулю:
`v_"cp"=(Delta S)/(Delta t)=(72 "км")/(8 "ч")=9 "км"//"ч"`.
В рамках классической механики скорость и ускорение тела преобразуются по определённым правилам при переходе от одной системы отсчёта к другой.
Пусть имеются две произвольные системы отсчёта `K` и `K^'` (рис. 6). Известны скорость `vecv^'` и ускорение `veca^'` тела (точки `A`) в `K^'` - системе.
Рассмотрим случай, когда `K^'`- система движется поступательно по отношению к `K` - системе, и определим значения скорости `vecv` и ускорения `veca` тела в `K`-системе.
Если за малый промежуток времени `Deltat` тело (точка `A`) переместилось относительно `K^'` - системы на величинy `Deltavecr^'`, а `K^'` - система переместилась относительно `K` - системы на `Deltavecr_0`, то из правила векторного сложения следует, что перемещение `Deltavecr` тела относительно `K` - системы будет равно `Deltavecr=Deltavecr_0+Deltavecr^'`. Разделив обе части этого равенства на $$ ∆t$$ и обозначив через скорость `K^'` - системы относительно `K` - системы, получим:
`vec v =vec v_o +vec v^'` (4)
Рассуждая аналогично,найдем формулу преобразования ускорения :
`vec a =vec a_o + vec a^'` (5)
Из формулы (5) вытекает важное следствие: при ускорения и `vec a^'` равны. Иными словами, если система отсчёта `K^'` движется поступательно без ускорения относительно системы отсчёта `K`, то ускорения тела в обеих системах отсчёта будут одинаковы.
Переход из одной системы отсчёта в другую довольно часто применяется на практике и порой существенно облегчает решение некоторых физических задач, поэтому к данному приёму желательно привыкнуть и научиться умело его использовать.
Часто встречаются задачи, в которых два тела движутся независимо друг от друга в некоторой системе отсчёта, и требуется определить какие-либо величины (перемещение, скорость), характеризующие движение одного тела относительно другого. В таких случаях, как правило, удобно перейти в систему отсчёта, связанную с тем телом, относительно которого рассматривается движение другого тела, и применить полученные выше формулы преобразований. Относительные перемещение и скорость двух тел определяются векторной разностью их перемещений и скоростей, заданных по отношению к одной и той же (чаще всего – неподвижной) системе отсчёта. Рассмотрим следующий пример.
Два корабля движутся с постоянными скоростями $$ {\overrightarrow{v}}_{1}$$ и $$ {\overrightarrow{v}}_{2}$$ под углом $$ \alpha $$ друг к другу (рис. 7). Найти скорость первого корабля относительно второго.
Перейдём в систему отсчёта, связанную со вторым кораблём, движущимся со скоростью $$ {\overrightarrow{v}}_{2}$$. В этой системе отсчёта относительная скорость `vec v^'` первого корабля согласно (4) будет равна `vec v^'= vec v_1 -vec v_2`. Вектор $$ \overrightarrow{v}\text{'}$$ определим геометрически, используя правило построения векторной разности (рис. 8). Из треугольника `BDE` с помощью теоремы косинусов найдём модуль искомого вектора:
`v^' =sqrt(v_1^2 +v_2^2-2v_1v_2cosalpha)`.
Направление вектора `vec v^'` зададим, например, углом `beta` (рис. 8), который определим из `DeltaBDE` по теореме синусов:
`(v_1)/(sinbeta)=(v^')/(sinalpha)`.
Отсюда
`sinbeta=(v_1)/(v^')sinalpha=(v_1 sinalpha)/(sqrt(v_1^2 +v_2^2-2v_1v_2cosalpha))`.
Рассмотрим некоторые характерные примеры движения тела, знание которых будет полезно при дальнейшем изучении физики.
1.Равномерное прямолинейное движение тела.
При равномерном прямолинейном движении тело совершает равные перемещения `Delta vecr` за одинаковые промежутки времени `Delta t`. Иными словами, скорость `vec v` тела не зависит от времени и остаётся постоянной в процессе движения:
`vec v= "const"`. (6)
При этом зависимость `vec r(t)` имеет вид:
`vec r(t)=vec r_0+vec v t`, (7)
где `vec r_0` - радиус-вектор тела в начальный момент времени $$ t=0$$ . В этой связи вспомним замечание о начальных условиях, сделанное в §4. Вектор $$ {\overrightarrow{r}}_{0}$$ здесь является тем начальным условием, которое позволяет однозначно определить радиус-вектор $$ \overrightarrow{r}$$ тела в любой момент времени в процессе движения.
Векторное уравнение (7) равносильно системе двух скалярных уравнений, выражающих зависимость от времени $$ t $$ координат $$ x$$ и $$ y$$ движущегося тела:
$$ \left\{\begin{array}{l}x\left(t\right)={x}_{0}+{v}_{x}\left(t\right),\\ y\left(t\right)={y}_{0}+{v}_{y}\left(t\right)·\end{array}\right.$$ | (8) |
где $$ {x}_{0}$$ и $$ {y}_{0}$$ - начальные координаты тела в момент времени $$ t=0$$, а $$ {v}_{x}$$ и $$ {v}_{y}$$ -проекции вектора скорости `vecv` на координатные оси $$ Ox$$ и $$ Oy$$ соответственно.
Траектория равномерного прямолинейного движения тела графически представляет собой отрезок прямой линии (рис. 9), тангенс угла наклона которой к оси абсцисс равен отношению проекций скорости на оси координат: $$ \mathrm{tg}\alpha ={v}_{y}/{v}_{x}$$. Аналитическое уравнение траектории, т. е. зависимость $$ y\left(x\right)$$, легко получить, исключив параметр $$ t$$ из системы уравнений (8):
`y(x)=(v_y)/(v_x)(x-x_0)+y_0`. (9)
Равномерное прямолинейное движение тела на плоскости $$ xOy$$ описывается уравнениями: $$ x\left(t\right)=6+3t$$, $$ y\left(t\right)=4t$$ (величины измерены в СИ). Запишите уравнение траектории тела. Изобразите графически зависимость модуля вектора скорости от времени $$ v\left(t\right)$$. Определите путь, пройденный телом в течение первых пяти секунд движения.
Сравнивая уравнения движения, представленные в условии задачи, с системой уравнений (8), находим:
$$ {x}_{0}=6$$ м, $$ {y}_{0}=0$$ , $$ {v}_{x} =3$$ м/c, $$ {v}_{y} =4$$ м/c.
Уравнение траектории получим, подставив эти значения в общее уравнение (9):
`y(x) =4/3(x - 6)`, или `y(x) = 4/3 x - 8`.
Модуль $$ v$$ скорости тела определим, зная $$ {v}_{x}$$ и $$ {v}_{y}$$:
`v=sqrt(v_x^2+v_y^2)=5` м/с.
График зависимости $$ v\left(t\right)$$ представлен на рис. 10. При равномерном прямолинейном движении пройденный путь `Delta S` численно равен модулю вектора `Delta \vec r` перемещения тела. Вектор `Delta\vec r` для такого движения найдём из уравнения (7): `Deltavec r = vec r (t) - vec r_0 = vec vt`. Его модуль равен: `Delta r = vt`. Таким образом, при равномерном движении путь, пройденный телом в течение времени `t`, определяется по формуле `Delta S = vt`, т. е. численно равен площади прямоугольника под графиком зависимости $$ v\left(t\right)$$ . Этот вывод можно обобщить и на случай неравномерного движения.
В нашем примере путь равен площади прямоугольника, заштрихованного на рис. 10:
`Delta S = vt = 5 "м"/"c"*5 "c" = 25 "м"`.
Используя рассуждения аналогичные Примеру 3, несложно показать, что пусть численно равен площади фигуры под графиком скорости при любом произвольном движении материальной точки.
Координаты тела при равномерном прямолинейном движении на плоскости $$ xOy $$ за время $$ t=2$$ c изменились от начальных значений $$ {x}_{0}=5$$ м, $$ {y}_{0}=7$$ м до значений $$ x=-3$$ м и $$ y=1$$ м. Найдите модуль скорости тела. Запишите уравнение траектории тела. Изобразите графически траекторию тела и направление вектора его скорости. Постройте графики зависимости координат тела от времени.
Проекции скорости на оси координат можно найти с помощью уравнений движения (8) и численных данных задачи:
`v_x=(x-x_0)/t=(-3-5)/2=-4` м/с, `v_y=(y-y_0)/t=(1-7)/2=-3` м/с.
Тогда модуль скорости `v=sqrt(v_x^2+v_y^2)=5` м/с.
Уравнение траектории $$ y\left(x\right)$$ с учётом (9) и численных данных задачи имеет вид:
$$ y\left(x\right)={\displaystyle \frac{3}{4}}(x-5)+7$$, или $$ y\left(x\right)={\displaystyle \frac{3}{4}}x+{\displaystyle \frac{13}{4}}$$.
Положение тела в начальный и конечный моменты времени (точки `A` и `B`), его траектория и направление скорости изображены на рис. 11. Зависимость координат тела от времени легко найти аналитически, подставляя начальные условия и значения $$ {v}_{x}$$ и $$ {v}_{y}$$ в общие уравнения движения (8):
$$ x\left(t\right)=5-4t,y\left(t\right)=7-3t$$.
Графически эти зависимости представлены в виде отрезков прямых на рис. 12.
Заметим, что тангенсы углов наклона отрезков прямых на рис. 12 численно равны коэффициентам при $$ t$$ в соответствующих уравнениях $$ x\left(t\right)$$ и $$ y\left(t\right)$$, т. е. значениям $$ {v}_{x}$$ и $$ {v}_{y}$$:
`"tg"alpha=-4`, `"tg"beta=-3`.
(Т. к. в данном случае графики уравнений движения представляют собой убывающие функции, то здесь тангесы отрицательны.)
2. Неравномерное движение тела.
Для неравномерного движения характерно то, что с течением времени изменяется скорость движущегося тела, а в общем случае и его ускорение. В качестве примера может служить движение, при котором тело проходит различные участки своего пути с разной скоростью. Такое движение принято характеризовать, прежде всего, средней путевой скоростью. Причём прилагательное «путевая» в условиях задач часто опускается.
Любитель бега трусцой пробежал половину пути со скоростью $$ {v}_{1}=10$$ км/ч. Затем половину оставшегося времени бежал со скоростью $$ {v}_{2}=8$$ км/ч, а потом до конца пути шёл пешком со скоростью $$ {v}_{3}=4$$ км/ч. Определить среднюю скорость движения бегуна.
Из смысла условия задачи следует, что здесь речь идёт о средней путевой скорости. Разобьём весь путь `Delta S` на три участка `Delta S_1`, `Delta S_2` и `Delta S_3`. Время движения на каждом участке обозначим соответственно `Delta t_1`, `Delta t_2`, `Delta t_3`. Средняя скорость бегуна согласно определению, выраженному формулой (3), будет равна:
`v_"cp"= (Delta S_1 +Delta S_2+Delta S_3)/(Delta t_1+Delta t_2+Delta t_3)`.
По условию задачи `Delta S_1 =DeltaS // 2`, `Delta S_2 + Delta S_3 = Delta S //2`. Поскольку `Delta S_1 = v_1Delta t_1`, `Delta S_2 = v_2Delta t_2`, `Delta S_3 = v_3Delta t_3` и, учитывая, что `Delta t_2 = Delta t_3`, найдём время движения на отдельных участках:
`Delta t_1=(Delta S_1)/(v_1)=(Delta S)/(2v_1)`,
`Delta t_2=(Delta S_2)/(v_2)=(Delta S)/(2(v_2+v_3))`,
`Delta t_3=(Delta S_3)/(v_3)=(Delta S)/(2(v_2+v_3))`.
Подставляя эти значения в выражение для `v_"ср"`, получим:
`v_"cp"=(Delta S)/((Delta S)/(2v_1)+(Delta S)/(2(v_2+v_3))+(Delta S)/(2(v_2+v_3))) =(2v_1(v_2+v_3))/(2v_1+v_2+v_3)=7,5` км/ч.
Заметим, что иногда учащиеся подсчитывают среднюю путевую скорость движения по формуле `v_"ср"= (v_1 + v_2 + ... + v_n)//n`, где `v_i` - скорость движения на `i`-м участке, `n` - число участков пути. Аналогично поступают и с вектором средней скорости `v_"ср"`. Следует иметь в виду, что такой расчёт в общем случае является ошибочным.
Другим характерным примером неравномерного движения служит так называемое равнопеременное движение, которое целесообразно рассмотреть подробно, не выходя при этом за рамки школьной программы.
3. Равнопеременное движение.
Равнопеременным называется такое неравномерное движение, при котором скорость `vec v` за любые равные промежутки времени `Delta t` изменяется на одинаковую величину `Deltavecv`. В этом случае ускорение `veca` тела не зависит от времени и остаётся постоянным в процессе движения:
`vec a="const"` (10)
(при этом `vec v != "const"`, и траектория движения не обязательно прямолинейная).
При равнопеременном движении скорость $$ \overrightarrow{v}$$ тела изменяется с течением времени по закону
`vec v (t)=vec v_0 +vec at`, (11)
где `vecv_0` - скорость тела в начальный момент времени `t=0`.
В свою очередь, зависимость `vecr(t)` имеет вид:
`vec r(t)=vec r_0+vec v_0t+(vec a t^2)/2`, (12)
где `vecr_0` - начальный радиус-вектор тела при `t=0`. Вновь заметим, что величины `vecv_0` и `vecr_0` представляют собой начальные условия, позволяющие в любой момент времени однозначно определить векторы `vecv` и `vecr`.
При координатном способе описания равнопеременного движения векторным уравнениям (11) и (12), равносильны следующие системы уравнений для проекций скорости и радиус-вектора тела на оси выбранной системы отсчёта. Здесь мы ограничиваемся случаем плоского движения, при котором траектория тела лежит в одной плоскости, совпадающей с координатной:
$$ \left\{\begin{array}{l}{v}_{x}\left(t\right)={v}_{0x}+{a}_{x}t,\\ {v}_{y}\left(t\right)={v}_{0y}+{a}_{y}t.\end{array}\right.$$ | (13) |
$$ \left\{\begin{array}{l}x\left(t\right)={x}_{0}+{v}_{0x}t+{\displaystyle \frac{{a}_{x}{t}^{2}}{2}},\\ y\left(t\right)={y}_{0}+{v}_{0y}t+{\displaystyle \frac{{a}_{y}{t}^{2}}{2}},\end{array}\right.$$ | (14) |
где $$ {x}_{0}$$ и $$ {y}_{0}$$ - начальные абсцисса и ордината тела (при $$ t=0$$), $$ {v}_{0x}$$ и $$ {v}_{0y}$$ - проекции начальной скорости `vecv_0` тела на координатные оси, $$ {a}_{x}$$ и $$ {a}_{y}$$ - проекции вектора ускорения на оси $$ Ox$$ и $$ Oy$$ соответственно.
В принципе формулы (11) и (12), или равносильные им системы уравнений (13) и (14) позволяют решить любую задачу на движение тела с постоянным ускорением.
В случае прямолинейного движения тела удобнее одну координатную ось, например ось $$ Ox$$, совместить с траекторией тела. Тогда для описания движения будет достаточно одной этой оси, в проекциях на которую векторные уравнения (11) и (12) дают:
$$ {v}_{x}={v}_{0x}+{a}_{x}t$$, $$ x={x}_{0}+{v}_{0x}t+{\displaystyle \frac{{a}_{x}{t}^{2}}{2}}$$.
Если на промежутке времени от $$ 0$$ до $$ t$$ направление движения тела не изменялось на противоположное, то разность $$ x-{x}_{0}$$текущей и начальной координат тела совпадает с пройденным путём $$ S$$, следовательно,
`S=v_(0x)t+(a_xt^2)/2`.
Эту формулу можно записать по-другому, если подставить в неё время $$ t$$, выраженное из уравнения $$ {v}_{x}={v}_{0x}+{a}_{x}t$$ . Это время будет
`t=(v_x-v_(0x))/a_x`.
Тогда для пути $$ S$$ после несложных преобразований получим
`S=(v_x^2-v_(0x)^2)/(2a_x)`.
Удобство этой формулы заключается в том, что она не содержит времени $$ t$$ в явном виде. Вместе с тем надо помнить, что формула получена в предположении о неизменности направления движения тела.
За `2`c прямолинейного равноускоренного движения тело прошло `20` м, увеличив свою скорость в `3` раза. Определите конечную скорость тела. (ЕГЭ, 2005г., уровень .B )
Пусть за время $$ t=2$$ с скорость тела изменилась от $$ {v}_{0}$$ до $$ v$$. Направим координатную ось $$ Ox$$ вдоль траектории тела в сторону движения. Тогда в проекциях на эту ось можно записать `v=v_0+at`, `a` - модуль ускорения тела. По условию `v_0=1/3v` и, следовательно, `a=2/3v/t`.
За время $$ t$$ тело, движущееся с таким ускорением, пройдёт путь
`S=(v^2-v_0^2)/(2a)`.
С учётом выражений для $$ {v}_{0}$$ и $$ a$$ получим `S=2/3vt`. Откуда искомая скорость `v=3/2S/t`. Подставляя сюда значения `S = 20` м и `t =2` c, найдём окончательно `v =15` м/ с.
Одним из наиболее наглядных примеров равнопеременного движения является движение тела в поле тяжести Земли, которое мы имеем возможность наблюдать повседневно. Для решения задач в этом случае надо заменить в приведённых выше формулах вектор $$ \overrightarrow{a}$$ на ускорение свободного падения $$ \overrightarrow{g}$$, сообщаемое силой гравитационного притяжения всякому телу, движущемуся в поле тяжести Земли. Рассмотрим три конкретных случая такого движения.
Движение тела, брошенного вертикально.
Тело бросили с поверхности земли, сообщив ему начальную скорость $$ {\overrightarrow{v}}_{0}$$ направленную вертикально вверх. Пренебрегая сопротивлением воздуха, определите время $$ \tau $$ полёта тела до момента падения на землю; скорость тела в момент падения; максимальную высоту $$ H$$ подъёма тела над землёй; время $$ {\tau }_{1}$$ подъёма тела на максимальную высоту; путь `S`, пройденный телом за время полёта и перемещение тела. Начертите графики зависимости от времени $$ t$$ вертикальной координаты тела и проекции на вертикальную ось его скорости в процессе полёта.
Поскольку движение полностью происходит в вертикальном направлении, то для определения пространственного положения тела достаточно одной координатной оси $$ Oy$$. Направим её вертикально вверх, начало отсчёта $$ O$$ поместим в точку бросания (рис. 13). Начальные условия движения тела: $$ {y}_{0}=0,{v}_{0y}={v}_{0}$$.
Проекция ускорения тела на ось $$ Oy$$ в отсутствие сопротивления воздуха равна $$ {a}_{y}=-g$$ , т. к. вектор $$ \overrightarrow{g}$$ направлен вертикально вниз противоположно направлению координатной оси. Вторые уравнения систем (13) и (14) с учётом начальных условий имеют вид:
`v_y=v_0-g t`, (15)
`y=v_0t-(g t^2)/2`. (16)
Пусть при $$ t=\tau $$ тело упало на землю. В этот момент $$ y=0$$ и уравнение (16) даёт: `0=v_0 tau-(g t^2)/2`. Откуда для $$ \tau $$ получаем: $$ \tau =0$$ или `tau=(2v_0)/g`. Значение $$ \tau =0$$ соответствует начальному моменту бросания тела с поверхности земли, и для нас интереса не представляет. Следовательно, время полёта тела `tau=(2v_0)/g`.
Согласно (15), при $$ t=\tau $$ имеем: $$ {v}_{y}={v}_{0}-gt$$. Тогда с учётом найденного значения $$ \tau $$ получим $$ {v}_{y}={v}_{0}-2{v}_{0}=-{v}_{0}$$. Таким образом, скорость тела в момент падения равна по величине начальной скорости $$ {v}_{0}$$, но направлена вертикально вниз, её проекция на ось $$ Oy$$ отрицательна.
Пусть при $$ t={\tau }_{1}$$ тело находится в наивысшей точке подъёма. Это значит, что $$ y=H,{v}_{y}=0$$. С учётом этих значений уравнения (15) и (16) дают:
`0=v_0-g tau_1`, `H=v_0 tau_1-(g tau_1^2)/2`.
Из первого уравнения определяем время подъёма тела `tau_1=(v_0)/g` и, подставляя $$ {\tau }_{1}$$ во второе уравнение, найдём `H=(v_0^2)/(2g)`.
Заметим, что время $$ {\tau }_{1}$$ подъёма тела на максимальную высоту вдвое меньше времени $$ \tau $$ полёта тела: $$ \tau =2{\tau }_{1}$$.
Путь $$ S$$, пройденный телом за время полёта, складывается из двух участков: подъёма до высшей точки траектории и падения с высшей точки траектории на поверхность земли. Очевидно, что длины траекторий движения тела на этих участках одинаковы и, значит, $$ S=2H$$. Перемещение тела равно нулю, поскольку начальная и конечная точки траектории тела совпадают.
Зависимость $$ y\left(t\right)$$ в соответствии с (16) представляет собой квадратичную функцию, графиком которой, как известно, является парабола (рис. 14). Ветви параболы направлены вниз, т. к. в формуле (16) коэффициент при `t^2` отрицателен.
Зависимость $$ {v}_{y}\left(t\right)$$ является линейной, и её график представляет собой отрезок прямой линии (рис. 15), тангенс угла наклона которой коси абсцисс равен коэффициенту при $$ t$$ в формуле (15):
`"tg"alpha=-g`.
Движение тела, брошенного горизонтально.
Тело бросили с высоты $$ H$$ над поверхностью земли, сообщив ему начальную скорость $$ {\overrightarrow{v}}_{0}$$, направленную горизонтально (рис. 16). Пренебрегая сопротивлением воздуха, определите время $$ \tau $$ полёта тела до его падения на землю, дальность $$ l$$ полёта тела, скорость `vecv` тела в момент падения. Выбрав прямоугольную систему координат так, как показано на рис. 16, запишите уравнение траектории движения тела, начертите графики зависимости от времени $$ t$$ координат тела и проекций скорости тела на координатные оси.
Начало отсчёта $$ O$$ поместим на поверхности земли под точкой бросания (рис. 16). Начальные условия движения тела: `x_0=0`, `y_0=H`, `v_(0x)=v_0`, `v_(0y)=0`. Проекции ускорения тела на оси координат при отсутствии сопротивления воздуха равны:
`a_x=0`, `a_y=-g`.
Запишем системы уравнений (13) и (14) с учётом этих значений:
$$ \left\{\begin{array}{l}{v}_{x}={v}_{0},\\ {v}_{y}=-gt·\end{array}\right.$$ | (17) |
$$ \left\{\begin{array}{l}x={v}_{0}t,\\ y=H-{\displaystyle \frac{g{t}^{2}}{2}}·\end{array}\right.$$ | (18) |
Пусть при $$ t=\tau $$ тело упало на землю. Это означает, что $$ y=0$$, $$ x=l$$, и уравнения системы (18) принимают вид:
$$ l={v}_{0}\tau $$, `0=H-(g tau^2)/2`.
Решая их ,находим:
`tau= sqrt((2H)/g)`, `l=v_0sqrt((2H)/g)`.
В свою очередь, система уравнений (17) даёт: $$ {v}_{x}={v}_{0},{v}_{y}=-g\tau $$. С учётом значения $$ \tau $$ получим `v_y=-sqrt(2gH)`, и модуль скорости `vecv` будет равен:
`v=sqrt(v_x^2+v_y^2)=sqrt(v_0^2+2gH)`.
Направление вектора `vecv` определим с помощью угла $$ \alpha $$ (рис. 16):
`"tg"alpha=v_y//v_x=(-sqrt(2gH))//v_0`.
Уравнение $$ y\left(x\right)$$ траектории движения тела получим, исключив параметр $$ t$$ из системы (18):
`y(x)=-g/(2v_0^2)x^2+H`.
Так как $$ y\left(x\right)$$ представляет собой квадратичную функцию, то траекторией движения тела является участок параболы с вершиной в точке бросания. Ветви параболы направлены вниз. Графики, требуемые в условии данного примера, представлены соответственно на рис. 17 и рис. 18.
Движение тела, брошенного под углом к горизонту.
Тело бросили с поверхности земли с начальной скоростью $$ {v}_{0}$$ направленной под углом $$ \alpha $$ к горизонту (рис. 19). Пренебрегая сопротивлением воздуха, определите время $$ \tau $$ полёта тела до его падения на землю,дальность $$ l$$ полёта тела, скорость тела в момент падения на землю,максимальную высоту $$ H$$ подъёма тела над землёй, время $$ {\tau }_{1}$$ подъёма тела на максимальную высоту. Запишите уравнение траектории тела.
Направим оси прямоугольной системы координат, как показано на рис. 19. Начало отсчёта $$ O$$ поместим в точку бросания. Тогда начальные условия движения тела таковы: `x_0=0`, `y_0=0`, `v_(0x)=v_0cosalpha`, `v_(0y)=v_0sinalpha`. При отсутствии сопротивления воздуха $$ {a}_{x}=0,{a}_{y}=g$$ С учётом этих значений системы уравнений (13) и (14) имеют вид:
$$ \left\{\begin{array}{l}{v}_{x}={v}_{0}\mathrm{cos}\alpha ,\\ {v}_{y}={v}_{0}\mathrm{sin}\alpha -gt·\end{array}\right.$$ | (19) |
$$ \left\{\begin{array}{l}x=\left({v}_{0}\mathrm{cos}\alpha \right)t,\\ y=\left({v}_{0}\mathrm{sin}\alpha \right)t-{\displaystyle \frac{g{t}^{2}}{2}}·\end{array}\right.$$ | (20) |
Пусть при $$ t=\tau $$ тело упало на землю, тогда: $$ y=0,x=l$$. Уравнения системы (20) дают:
$$ l=\left({v}_{0}\mathrm{cos}\alpha \right)\tau $$, $$ 0=\left({v}_{0}\mathrm{sin}\alpha \right)\tau -{\displaystyle \frac{g{\tau }^{2}}{2}}$$.
Откуда находим
$$ \tau ={\displaystyle \frac{2{v}_{0}\mathrm{sin}\alpha }{g}}$$, $$ l={\displaystyle \frac{{v}_{0}^{2}\text{sin}2\alpha }{g}}$$.
(Здесь использовано равенство $$ 2\mathrm{sin}\alpha \mathrm{cos}\alpha =\mathrm{sin}2\alpha .$$ )
Из полученного выражения для $$ l$$ легко определить угол $$ \alpha $$, при котором дальность полёта тела будет максимальной. Действительно, величина $$ l$$ как функция от $$ \alpha $$ принимает максимальное значение в том случае, когда $$ \mathrm{sin}2\alpha =1$$. Это возможно, если `2alpha=90^@`, т. е. `alpha=45^@`.
Модуль скорости тела в момент падения на землю определим с помощью теоремы Пифагора: `v=sqrt(v_x^2+v_y^2)`. В соответствии с системой уравнений (19) в этот момент (при $$ t=\tau $$ ) имеем: $$ {v}_{x}={v}_{0}\mathrm{cos}\alpha $$, $$ {v}_{y}={v}_{0}\mathrm{sin}\alpha -g\tau =-{v}_{0}\mathrm{sin}\alpha $$.
Следовательно, $$ v=\sqrt{{v}_{0}^{2}{\mathrm{cos}}^{2}\alpha +{v}_{0}^{2}{\mathrm{sin}}^{2}\alpha }={v}_{0}$$, (так как $$ {\mathrm{cos}}^{2}\alpha +{\mathrm{sin}}^{2}\alpha =1$$).
Направление скорости тела в момент падения составляет угол $$ \alpha $$ с направлением оси $$ Ox$$. Этот угол отсчитывается по часовой стрелке от направления оси $$ Ox$$.
Пусть при $$ t={\tau }_{1}$$ тело достигло максимальной высоты. В этот момент $$ {v}_{y}=0$$, `y=H`. Соответствующие уравнения систем (19) и (20) дают:
$$ 0={v}_{0}\mathrm{sin}\alpha -g{\tau }_{1}$$, $$ H=\left({v}_{0}\mathrm{sin}\alpha \right){\tau }_{1}-{\displaystyle \frac{g{\tau }_{1}^{2}}{2}}$$.
Отсюда последовательно находим:
$$ {\tau }_{1}={\displaystyle \frac{{v}_{0}\mathrm{sin}\alpha }{g}}$$, $$ H={\displaystyle \frac{{v}_{0}^{2}{\mathrm{sin}}^{2}\alpha }{2g}}$$.
Видим,что $$ \tau =2{\tau }_{1}$$.
Уравнение траектории получим, исключив из системы (20) время $$ t$$ :
$$ y\left(x\right)={\displaystyle \frac{g}{2{v}_{0}^{2}{\mathrm{cos}}^{2}\alpha }}{x}^{2}+\mathrm{tg}\alpha x$$.
График траектории тела представляетсобой участок параболы, ветви которой направлены вниз.
Два маленьких стальных шарика брошены одновременно из одной и той же точки с поверхности земли с начальными скоростями $$ {v}_{01}=5\mathrm{м}/\mathrm{c},{v}_{02}=8\mathrm{м}/\mathrm{c}$$, направленными под углами к горизонту соответственно. Чему равно расстояние между шариками, спустя время `t=1/3` с после броска?
Траектории шариков лежат в одной вертикальной плоскости. Сопротивлением воздуха пренебречь.
Шарики движутся в поле тяжести Земли с постоянным ускорением (сопротивлением воздуха пренебрегаем).
Выберем систему координат так, как показано на рис. 20, начало отсчёта поместим в точку бросания. Для радиус-векторов шариков $$ {\overrightarrow{r}}_{1}\left(t\right)$$ и $$ {\overrightarrow{r}}_{2}\left(t\right)$$ имеем: $$ {\overrightarrow{r}}_{1}\left(t\right)={\overrightarrow{r}}_{01}+{\overrightarrow{v}}_{01}t+{\displaystyle \frac{\overrightarrow{g}{t}^{2}}{2}}$$, $$ {\overrightarrow{r}}_{2}\left(t\right)={\overrightarrow{r}}_{02}+{\overrightarrow{v}}_{02}t+{\displaystyle \frac{\overrightarrow{g}{t}^{2}}{2}}$$.
Искомое расстояние $$ l$$ равно модулю разности радиус-векторов шариков в момент времени `t=1/3` с. Так как шарики были брошены из одной и той же точки, то $$ {\overrightarrow{r}}_{01}={\overrightarrow{r}}_{02}$$ , следовательно:
$$ l=\mid {\overrightarrow{r}}_{1}\left(t\right)-{\overrightarrow{r}}_{2}\left(t\right)\mid =\mid {\overrightarrow{v}}_{01}-{\overrightarrow{v}}_{02}\mid t$$.
(Остальные слагаемые при вычитании радиус-векторов уничтожились.) В свою очередь, по теореме косинусов (см. рис. 20):
`|vecv_(01)-vecv_(02)|=sqrt(v_(01)^2+v_(02)^2-2v_(01)v_(02)cos(alpha_1-alpha_2))`.
Подставляя в это равенство числовые значения входящих в него величин, получим $$ \mid {\overrightarrow{v}}_{01}-{\overrightarrow{v}}_{02}\mid =7$$ м/с.
Тогда искомое расстояние между шариками в момент времени `t=1/3` с будет равно
$$ l=7{\displaystyle \frac{\mathrm{м}}{\mathrm{с}}}·{\displaystyle \frac{1}{3}}\mathrm{c}={\displaystyle \frac{7}{3}}\mathrm{м}\approx \mathrm{2,3} \mathrm{м}$$.
Два тела брошены вертикально вверх с поверхности земли из одной точки вслед друг за другом с интервалом времени $$ \tau $$, с одинаковыми начальными скоростями $$ {\overrightarrow{v}}_{0}$$. Пренебрегая сопротивлением воздуха, определить, через сколько времени они «встретятся»? Прокомментируйте решение для `v_0<g tau/2`.
Направим ось `Oy` вертикально вверх, начало отсчёта поместим в точку бросания. Отсчёт времени будем вести, начиная с момента бросания первого тела. Начальные условия движения тел:
1) $$ {t}_{0}=0,{y}_{01}=0,{v}_{y01}={v}_{0}$$ ;
2) $$ {t}_{0}=\tau ,{y}_{02}=0,{v}_{y02}={v}_{0}$$.
Проекции ускорений тел при отсутствии сопротивления воздуха равны $$ {a}_{y1}={a}_{y2}=-g$$. Уравнения движения тел в проекциях на ось $$ Oy$$ с учётом начальных условий имеют вид:
`y_1(t)= v_0t-(g t^2)/2`, `y_2(t)=v_0(t-tau)-(g(t-tau)^2)/2`.
(Заметим, что `y_2=0` при `0<t<=tau`)
$$ {v}_{0}{t}_{x}-{\displaystyle \frac{g{t}_{x}^{2}}{2}}={v}_{0}({t}_{x}-\tau )-{\displaystyle \frac{g({t}_{x}-\tau {)}^{2}}{2}}$$.
Решая это уравнение относительно `t_x`, находим: $$ {t}_{x}={\displaystyle \frac{{v}_{0}}{g}}+{\displaystyle \frac{\tau }{2}}$$.
Проанализируем полученное выражение при `v_0<g tau//2`. Известно (см. Пример 7), что время полёта тела, брошенного вертикально, равно $$ 2{v}_{0}/g$$. Поэтому, если `v_0<g tau//2`, то $$ \tau >2{v}_{0}/g$$. Это означает, что сначала упадёт на землю первое тело, а только затем будет брошено вверх второе. Иными словами, тела «встретятся» в точке бросания.
Мальчик, находясь на плоском склоне горы с углом наклона `varphi=30^@`, бросает камень в сторону подъёма горы, сообщив ему начальную скорость $$ {v}_{0}$$, направленную под углом `beta=60^@` к горизонту. На каком расстоянии от мальчика упадёт камень? Сопротивлением воздуха пренебречь.
Выберем систему отсчёта так, как показано на рис. 22, поместив начало отсчёта `O` в точку бросания. В этой системе отсчёта начальная скорость камня составляет с осью `Ox` угол `alpha=beta-varphi=30^@`. Начальные условия: `x_0=0`, `y_0=0`, `v_(0x)=v_0 cosalpha`, `v_(0y)=v_0sinalpha`.
Проекции ускорения камня в отсутствие сопротивления воздуха равны (см. рис. 22): $$ {a}_{x}={g}_{x}=-g\mathrm{sin}\phi $$, $$ {a}_{y}={g}_{y}=-g\mathrm{cos}\phi $$. Здесь мы учли, что угол между вектором и перпендикуляром к поверхности горы равен углу наклона горы `varphi=30^@`, кроме того, по условию задачи $$ \phi =\alpha $$
Запишем уравнения системы (14) с учётом начальных условий:
$$ x\left(t\right)=\left({v}_{0}\mathrm{cos}\alpha \right)t-\left(g\mathrm{sin}\phi \right){\displaystyle \frac{{t}^{2}}{2}}$$, $$ y\left(t\right)=\left({v}_{0}\mathrm{sin}\alpha \right)t-\left(g\mathrm{cos}\phi \right){\displaystyle \frac{{t}^{2}}{2}}$$.
Время полёта $$ \tau $$ камня найдём из последнего уравнения, зная, что
$$ y\left(\tau \right)=0$$, $$ \mathrm{cos}\phi ={\displaystyle \frac{\sqrt{3}}{2}}$$, $$ \mathrm{sin}\alpha ={\displaystyle \frac{1}{2}}$$.
А именно $$ \tau ={\displaystyle \frac{2}{\sqrt{3}}}{\displaystyle \frac{{v}_{0}}{g}}$$ . (Значение $$ \tau =0$$ мы отбросили, т. к. оно не связано с вопросом задачи).
Подставляя найденное значение $$ \tau $$ в уравнение для $$ x\left(t\right)$$ определим искомое расстояние (иными словами, дальность полёта):
$$ l=x\left(\tau \right)= {\displaystyle \frac{2}{3}}{\displaystyle \frac{{v}_{0}^{2}}{g}}$$.
Массивная платформа движется с постоянной скоростью `vecV_0` по горизонтальному полу. С заднего края платформы производится удар по мячу. Модуль начальной скорости мяча относительно платформы равен $$ u=2{V}_{0}$$ причём вектор $$ \overrightarrow{u}$$составляет угол `alpha=60^@` с горизонтом (рис. 23). На какую максимальную высоту над полом поднимется мяч? На каком расстоянии от края платформы будет находиться мяч в момент приземления. Высотой платформы и сопротивлением воздуха пренебречь. Все скорости лежат в одной вертикальной плоскости. (ФЗФТШ при МФТИ, 2009.)
Для описания движения мяча и платформы введём систему отсчёта, связанную с полом. Ось $$ Ox$$ направим горизонтально в направлении удара, а ось $$ Oy$$ вертикально вверх (рис. 23).
Движение мяча происходит с постоянным ускорением $$ \overrightarrow{a}$$причём $$ {a}_{x}=0,{a}_{y}=-g$$ где $$ g$$ - величина ускорения свободного падения.
Проекции начальной скорости $$ {\overrightarrow{v}}_{0}$$ мяча на оси $$ Ox$$ и $$ Oy$$ равны:
`v_(0,x)=V_(0,x)+u_x=-V_0+2V_0*cos60^@=-V_0+V_0=0`,
`v_(0,y)=V_(0,y)+u_y=0+2V_0*sin60^@=sqrt3V_0`.
Равенство нулю горизонтальной скорости мяча означает, что его движение происходит только по вертикали, и он упадёт в точке удара.
Максимальную высоту подъёма `(y_"max")` и время полёта мяча найдём из законов кинематики равноускоренного движения:
$$ {v}_{y}^{2}-{v}_{0,y}^{2}=2{a}_{y}(y-{y}_{0}), y={y}_{0}+{v}_{0,y}t+{\displaystyle \frac{{a}_{y}{t}^{2}}{2}}$$.
Учитывая, что при `y=y_"max"` проекция вертикальной скорости обращается в ноль $$ ({v}_{y}=0)$$, а в момент приземления мяча $$ (t={T}_{\mathrm{полета}})$$ его координата по оси $$ Oy$$ обращается в ноль $$( y=0)$$, имеем:
$$ {y}_{\mathrm{max}}={\displaystyle \frac{{v}_{0,y}^{2}}{2g}}={\displaystyle \frac{3{V}_{0}^{2}}{2g}}, {T}_{\mathrm{полета}}={\displaystyle \frac{2\sqrt{3}{V}_{0}}{g}}$$.
За время полёта мяча платформа сместится на расстояние
$$ L={V}_{0}{T}_{\mathrm{полета}}={\displaystyle \frac{2\sqrt{3}{V}_{0}^{2}}{g}}$$,
которое и является искомым расстоянием между мячом и платформой в момент приземления мяча.