Все статьи

Подкатегории

Новости

486 статей

О Физтехе

1 подкатегорий

2 статей

Московский политех

2 подкатегорий

1 статей

Разное

16 статей

Статьи , страница 388

  • § 1. Линейные уравнения с двумя переменными

    В первом задании мы рассмотрели линейные уравнения с одной переменной. Например, уравнения `2x+5=0`, `3x+(8x-1)+9=0` являются линейными уравнениями с переменной `x`. Уравнение, содержащее переменные `x` и `y`, называется уравнением с двумя переменными. Например, уравнения  `2x-3=5`, `x^2+xy-y^2=7`  являются уравнениями с двумя переменными.

    Уравнение вида `ax+by=c` называется линейным уравнением с двумя переменными, где `x` и `y` переменные, `a`, `b`, `c` - некоторые числа.

    Например, уравнения `2x+y=3`, `x-y=0` являются линейными уравнениями с двумя переменными.

    Решением уравнения с двумя переменными называется пара значений переменных, обращающая это уравнение в верное равенство.

    Например, `x=3`, `y=4` является решением уравнения `2x+3y=18`, будем эту пару чисел записывать так `(3;4)`.  Очевидно, что пара чисел `(4;3)` не является решением уравнения, т. к. `2*4+3*3=17!=18`. При нахождении решений с двумя переменными на первом месте в паре чисел пишем значение для переменной `x`, а на втором месте – значение переменной `y`.

    Если каждое решение одного уравнения является решением второго уравнения и обратно, то данные уравнения называются равносильными. Например, решения уравнений `2x+y=3` и `4x+2y=6` совпадают, следовательно, эти уравнения равносильные.

    Справедливы следующие правила при решении уравнений с двумя переменными:

    1) если в уравнении перенести слагаемое из одной части в другую, изменив его знак, то получится уравнение, равносильное данному;

    2) если обе части уравнения умножить или разделить на одно и то же отличное от нуля число, то получим уравнение, равносильное данному.

    Пример 1

    Укажите три различных решения для уравнения `3x+y-2=0`.

    Решение

    Если  `x=0`, то `y=2`;  если `y=0`,  то `x=2/3`;  если `x=1`,  то `y=-1`.

    Таким образом, пары чисел `(0;2)`, `(2/3;0)`, `(1;-1)` являются решениями данного уравнения. Заметим, что данное уравнение имеет бесконечно много решений. Для заданного значения `x` значение `y=2-3x`, т. е. любая пара чисел `(x;2-3x)`, где `x` - любое число, является решением уравнения. 


    Рассмотрим координатную плоскость `Oxy` и отметим на ней все точки `(x,y)`, для которых пара чисел `x` и `y` является решениями уравнения. Например, рассмотрим уравнение `y=2`. Этому уравнению удовлетворяют все пары чисел `(x;2)`.Точки, для которых `x` - любое число, а `y=2`, лежат на прямой `y=2`. Эта прямая параллельна оси `x` и проходит через точку `(0;2)`  (см. рис. 1).    

                

    Рассмотрим уравнение `x=3`. Каждая пара чисел, являющаяся решением данного уравнения, изображается точкой с координатами `x` и `y` на координатной плоскости `Oxy`. Решениями данного уравнения являются пары чисел `(3;y)`. Точки с координатами `x=3` и `y` лежат на прямой `x=3`, эта прямая параллельна оси `Oy` и проходит через точку `(3;0)` (см. рис. 2).

    Графиком уравнения с двумя переменными называется множество всех точек координатной плоскости, координаты которых являются решениями данного уравнения.

    На рис. 1 графиком уравнения является прямая `y=2`, на рис. 2 графиком уравнения является прямая `x=3`.

    Рассмотрим теперь уравнение  `2x+3y-1=0`. Выразим переменную `y` через `x`, получаем `y=1/3-2/3x`, это уравнение задаёт линейную функцию, и нам известно, что её графиком является прямая. Чтобы построить эту прямую, достаточно рассмотреть две точки, координаты которых удовлетворяют уравнению, а затем через эти две точки провести прямую. При `x=0` `y=1/3` и при `x=1/2` `y=0`. График данного уравнения приведён на рис. 3.

      


    Рассмотрим уравнение  `(x-4)(x+y-4)=0`. Произведение двух скобок равно нулю, каждая скобка может равняться нулю. Наше уравнение распадётся на два уравнения: `x=4` и `x+y-4=0`. Графиком первого уравнения является прямая, параллельная оси `Oy` и проходящая через точку `(4;0)`. Графиком второго уравнения является график линейной функции `y=4-x`, эта прямая проходит через точки `(4;0)` и `(0;4)`. График данного уравнения приведён на рис. 4.

    Пример 2

    Постройте график уравнения `|x|+|y|=1`.

    Решение

    Этот пример можно решать двумя способами. Пусть `x>=0` и `y>=0`, точки с такими координатами лежат в первой четверти. Получаем уравнение `x+y=1`, так как `|x|=x` и `|y|=y`. Графиком данного уравнения является прямая, проходящая через точки `A(1;0)` и `B(0;1)`. Графику исходного уравнения принадлежат точки полученной прямой, лежащие в первой четверти, т. е. графику принадлежат точки отрезка `AB`, где `A(1;0)` и `B(0;1)`.

    Пусть теперь `x<=0` и `y>=0` тогда получаем уравнение `-x+y=1`, рассматриваем точки полученной прямой, лежащие во второй четверти. Это будет отрезок `BC`, где `C(-1;0)`. При  `x<=0`, `y<=0` получим отрезок `CD` где `D(0;-1)`, и при `>=0`, `y<=0` получим отрезок `DA`. Таким образом,  график   данного   уравнения  состоит   из   точек  квадрата `ABCD` (рис. 5).

    Этот пример можно решать другим способом. Пусть `y>=0`, тогда наше уравнение эквивалентно уравнению `y=1-|x|`. В первом задании мы строили график функции `y=|x|` (см. рис. 6). График функции `y=-|x|`  получается   зеркальным   отражением  относительно  оси `Ox` графика функции  `y=|x|` (см. рис. 7). График функции `y=1-|x|` получается из графика функции `y=-|x|` сдвигом вдоль оси `Oy` на единицу вверх (см. рис. 8). У полученного графика рассматриваем только точки, для которых `y>=0`. Получим ломаную `ABC` с рис. 5.

    Далее рассматриваем `y<=0`, получим, что графиком уравнения при `y<=0` является ломаная `CDA` с рис. 5. В итоге получим квадрат `ABCD` с рис. 5. 

    Пример 3

    Найдите все решения уравнения `xy=6`, для которых `x` и `y` являются натуральными числами.

    Решение

    Очевидно, что натуральные числа `x` и `y` являются делителями числа `6`. Поэтому `x` и `y` могут принимать значения `1;` `2;` `3;` `6`. Следовательно,   искомыми   решениями   являются   числа  `(1;6)`, `(2;3)`, `(3;2)`, `(6;1)`.

    Пример 4

    Найти все решения уравнения `x^2+4x=y^2+2y+8`, для которых значения `x` и `y` являются целыми числами.

    Решение

    Обычно такие примеры формулируют так: найти все решения данного уравнения в целых числах.

    Преобразуем   данное   уравнение:  `x^2+4x+4-4=y^2+2y+1+7`,

    `(x+2)^2=(y+1)^2+11`,   

    `(x+2)^2-(y+1)^2=11`,

    `(x+2-y-1)*(x+2+y+1)=11`.

    Если `x` и `y` целые числа, то выражения, стоящие в скобках, являются целыми числами. А это могут быть числа `+-1` и `+-11`. Решаем `4` системы уравнений:

    $$ \left\{\begin{array}{l}x+2-y-1=1,\\ x+2+y+1=11;\end{array}\right.$$

    $$ \left\{\begin{array}{l}x+2-y-1=11,\\ x+2+y+1=1;\end{array}\right.$$

    $$ \left\{\begin{array}{l}x+2-y-1=-1,\\ x+2+y+1=-11;\end{array}\right.$$

    $$ \left\{\begin{array}{l}x+2-y-1=-11,\\ x+2+y+1=-1.\end{array}\right.$$

    Решая эти системы, получаем `4` решения: `(4;4)`, `(4;-6)`, `(-8;-6)`, `(-8;4)`.  







  • § 2. Системы линейных уравнений

    Решение многих задач сводится к решению систем линейных уравнений.

    Определение

    Системой двух линейных уравнений с двумя неизвестными `x` и `y` называется система уравнений вида

    $$ \left\{\begin{array}{l}{a}_{1}x+{b}_{1}y={c}_{1},\\ {a}_{2}x+{b}_{2}y={c}_{2},\end{array}\right.$$

    где `a_1`, `b_1`, `c_1`, `a_2`, `b_2`, `c_2` - некоторые числа.

    Решением системы уравнений с двумя переменными называется пара значений переменных, обращающая каждое уравнение в верное числовое равенство.

    Например, пара чисел `(2;3)` является решением системы уравнений

    $$ \left\{\begin{array}{l}2x+3y=13,\\ x+5y=17,\end{array}\right.$$

    а пара чисел `(1;1)` не является решением системы, т. к. эта пара не является решением каждого из уравнений системы.

    Обозначим множество решений первого уравнения буквой `A`, а множество решений второго уравнения - `B`. Множество решений системы этих уравнений составляет пересечение множеств `A` и `B` (рис. 9). При этом возможны случаи, когда пересечение двух множеств является пустым (рис. 10) или совпадает с каждым из множеств `A` и `B` (рис. 11).

    Графиком линейного уравнения `ax+by=c`, где `a^2+b^2>0`, является прямая. Следовательно, решение системы линейных уравнений с двумя неизвестными для указанного случая сводится к нахождению на координатной плоскости общих точек двух прямых линий. А две прямые на плоскости могут:

    1) пересекаться, т. е. иметь единственную общую точку;

    2) быть параллельными, т. е. не иметь общих точек;

    3) совпадать, т. е. иметь бесконечно много общих точек.

    Значит, система двух линейных уравнений с двумя неизвестными может либо иметь единственное решение, либо вообще не иметь решения, либо иметь бесконечное множество решений.

    Пример 5

    Сколько решений имеет система уравнений 

    $$ \left\{\begin{array}{l}2y+3x=8,\\ y-x=-1?\end{array}\right.$$

    Решение

    Запишем первое уравнение системы в виде `y=-3/2x+4`, а второе уравнение системы в виде `y=x-1`. Мы получили две линейные функции, графиками которых являются прямые с разными угловыми коэффициентами у первой `k_1=-3/2`, а у второй `k_2=1`. Вам известно, что такие прямые пересекаются в одной точке. Чтобы найти координаты точки пересечения прямых, приравняем значения для `y`. Получаем 

     `-3/2x+4=x-1`, `-3/2x-x=-4-1`, `-5/2x=-5`, `x=2`, 

    тогда `y=2-1=1`.

    Таким образом, система имеет единственное решение  `(2;1)`.


    Пример 6

    Решите систему уравнений

    $$ \left\{\begin{array}{l}2x+y=5,\\ 4x+2y=10.\end{array}\right.$$

    Решение

    Из первого уравнения следует, что `y=5-2x`, а из второго уравнения получим `y=5-2x`. Графики этих уравнений совпадают. Уравнению удовлетворяет любая пара чисел `(x,5-2x)`, где  `x` любое число, а `y=5-2x`. Система уравнений имеет бесконечно много решений.

    Пример 7

    Решите систему уравнений

    $$ \left\{\begin{array}{l}x+y=7,\\ 2x+2y=10.\end{array}\right.$$

    Решение

    Запишем первое уравнение системы в виде `y=-x+7` и второе уравнение системы в виде `y=-x+5`. Графиками этих уравнений являются две параллельные прямые, которые не пересекаются, т. к.  `-x+7=-x+5`,  `x*0=-2`, а это уравнение не имеет решений.

    При решении систем применяют метод подстановки, метод сложения и метод введения новых переменных.

    Алгоритм решения системы двух линейных уравнений с двумя

    неизвестными способом подстановки

    1. В одном из уравнений выразить одно неизвестное через другое.

    2. Подставить вместо этого неизвестного полученное выражение в другое уравнение системы.

    3. Решить полученное во втором пункте уравнение с одним неизвестным.

    4. Воспользовавшись найденным значением одного неизвестного, вычислить значение второго неизвестного.

    5. Записать ответ.

    Покажем на конкретном примере, как применяется метод подстановки.

    Пример 8

    Решите систему уравнений

    $$ \left\{\begin{array}{l}2x+y=4,\\ 5x+3y=11.\end{array}\right.$$

    Решение

    Из первого уравнения выражаем `y=4-2x`, и это значение для `y` подставляем во второе уравнение системы, получаем: 

    `5x+3(4-2x)=11`,  `5x+12-6x=11`,  `-x=-1`,  `x=1`. 

    Подставляем это значение `x` в выражение для `y`, получаем: `y=4-2=2`. Пара чисел `(1;2)` является единственным решением системы уравнений.

    Алгоритм решения системы двух линейных уравнений с двумя

    неизвестными способом алгебраического сложения

    1. Умножить или разделить одно (или оба) уравнения системы на некоторое число, не равное 0, так, чтобы коэффициенты при одном из неизвестных в обоих уравнениях стали противоположными числами (или совпали).

    2. Сложить (вычесть) уравнения.

    3. Решить полученное во втором пункте уравнение с одним неизвестным.

    4. Воспользовавшись найденными значениями одного неизвестного, вычислить значение второго неизвестного.

    5. Записать ответ.

    Теперь приведём пример, где применяется метод сложения.

    Пример 9

    Решите систему уравнений

    $$ \left\{\begin{array}{l}3x-2y=5,\\ 2x+2y=10.\end{array}\right.$$

    Решение

    В этих уравнениях коэффициенты при переменной `y` отличаются знаком. Сложив уравнения системы, получаем 

    `3x-2y+2x+2y=5+10`,  `5x=15`,  `x=3`.

    Подставляем найденное значение `x`, например, в первое уравнение системы, получаем:

    `3*3-2y=5`, `-2y=-4`,  `y=2`.

    Система имеет единственное решение  `(3;2)`.

    Пример 10

    Решите систему уравнений

    $$ \left\{\begin{array}{l}4x+3y=11,\\ 3x+7y=13.\end{array}\right.$$

    Решение

    Сделаем коэффициенты при $$ x$$ обоих уравнений противоположными числами, для этого умножим обе части первого уравнения на `3` и обе части второго уравнения на  `(-4)`, получим систему

    $$ \left\{\begin{array}{l}12x+9y=33,\\ -12x-28y=-52.\end{array}\right.$$

    Сложим   уравнения   системы:     

    `12x+9y-12x-28y=33-52`, `-19y=-19`,  `y=1`.

    Подставляем это значение для `y` в первое уравнение системы, получаем:  

    `12x+9=33`,  `12x=24`,  `x=2`.

    Пара чисел `(2;1)` является единственным решением системы.

    Метод введения новых переменных позволяет упростить вид системы.

    Покажем на конкретном примере, как применяется метод введения новых переменных.

    Пример 11

    Решите систему уравнений

    $$ \left\{\begin{array}{l}{\displaystyle \frac{1}{2x-y}}+{\displaystyle \frac{9}{3x+y}}=2,\\ {\displaystyle \frac{7}{2x-y}}-{\displaystyle \frac{18}{3x+y}}=5.\end{array}\right.$$

    Решение

    Введём новые переменные:  `u=1/(2x-y)`,  `v=1/(3x+y)`.

    Для переменных  `u` и `v` получим систему уравнений

    $$ \left\{\begin{array}{l}u+9v=2,\\ 7u-18v=5.\end{array}\right.$$

    Умножим обе части первого уравнения на `2`, получим систему

    $$ \left\{\begin{array}{l}2u+18v=4,\\ 7u-18v=5.\end{array}\right.$$

    Сложим уравнения системы, получим  `9u=9`, `u=1`. Из первого уравнения при  `u=1` следует, что  `v=1/9`.

    Из условия  `1/(2x-y)=1` следует, что `2x-y=1`, а из условия `1/(3x+y)=1/9` следует, что `3x+y=9`. Решаем систему уравнений

    $$ \left\{\begin{array}{l}2x-y=1,\\ 3x+y=9.\end{array}\right.$$

    Сложим уравнения системы:  `5x=10`,  `x=2`,  из первого уравнения получаем `4-y=1`, `y=3`.

    Ответ

    `(2;3)`.

    Мы рассмотрели системы двух уравнений с двумя неизвестными, теперь рассмотрим систему из трёх уравнений с тремя неизвестными.

    С помощью способа сложения сводим систему трёх уравнений с тремя неизвестными к системе двух уравнений с двумя неизвестными. Покажем это на примере.

    Пример 12

    Решите систему уравнений

    $$ \left\{\begin{array}{l}10x-5y-3z=-9,\\ 6x+4y-5z=-1,\\ 3x-4y-6z=-23.\end{array}\right.$$

    Решение

    Уравняем коэффициенты при `x` в первом и втором уравнениях, для этого умножим обе части первого уравнения на `3`, а второго уравнения  –  на `5`, получаем:

    $$ \left\{\begin{array}{l}30x-15y-9z=-27,\\ 30x+20y-25z=-5.\end{array}\right.$$

    Вычитаем из второго уравнения полученной системы первое уравнение, получаем:

    `35y-16z=22`.

    Из второго уравнения исходной системы вычитаем третье уравнение, умноженное   на   `2`,   получаем:  

    `4y+8y-5z+12z=-1+46`,  `12y+7z=45`.

    Теперь решаем новую систему уравнений:

    $$ \left\{\begin{array}{l}35y-16z=22,\\ 12y+7z=45.\end{array}\right.$$

    К первому уравнению новой системы, умноженному на `7`, прибавляем второе уравнение, умноженное на `16`, получаем:

    `35*7y+12*16y=22*7+45*16`, 

    `245y+192y=154+720`,  `437y=874`, `y=2`.     

    Подставляем `y=2`  в уравнение `12y+7z=45`, получаем: 

    `24+7z=45`, `7z=21`, `z=3`.

    Теперь подставляем  `y=2`, `z=3`  в первое уравнение исходной системы, получаем:      

    `10x-5*2-3*3=-9`,  `10x-10-9=-9`,  `10x=10`, `x=1`. 

    Ответ

    `(1;2;3)`.

    При решении задач могут получаться системы уравнений с большим количеством неизвестных, их решение осуществляется аналогичным образом.

  • § 3. Решение систем с параметром и с модулями

    В данном параграфе мы познакомимся со способами решения систем двух линейных уравнений с модулями.

    Пример 13

    Решите систему уравнений $$ \left\{\begin{array}{l}\left|x-y\right|=5,\\ 3x+2y=10.\end{array}\right.$$


    Решение

    Модуль в уравнении `|x-y|=5` можно «раскрыть», пользуясь определением модуля числа:

    $$\left|x-y\right|=\left\{\begin{array}{l}x-y,\;\mathrm{или}\;x-y\geq0,\\y-x,\;\mathrm{или}\;x-y<0.\end{array}\right.$$

    Следовательно, уравнение `|x-y|=5` при `x-y>=0` записывается в виде `x-y=5`, а при `x-y<0` в виде `y-x=5`, и поэтому вместо одной системы уравнений с модулем нам придётся рассмотреть две соответствующие системы.

    1 случай. Если `x-y>=0`, система имеет вид:

    $$ \left\{\begin{array}{l}x-y=5,\\ 2x+3y=10,\end{array}\right.  \left\{\begin{array}{l}3x-3y=15,\\ 2x+3y=10,\end{array}\right.  \left\{\begin{array}{l}5x=25,\\ x-y=5,\end{array}\right.  \left\{\begin{array}{l}x=5,\\ y=0.\end{array}\right.$$

    Итак, `x=5`, `y=0`, условие `x-y>=0` выполняется. Значит, найденные пары чисел является решением исходной системы.

    2 случай. Если  `x-y<0`, система имеет вид:

    $$ \left\{\begin{array}{l}y-x=5,\\ 2x+3y=10,\end{array}\right. \left\{\begin{array}{l}2y-2x=10,\\ 2x+3y=10,\end{array}\right. \left\{\begin{array}{l}y-x=5,\\ 5y=20,\end{array}\right. \left\{\begin{array}{l}x=-1,\\ y=4.\end{array}\right.$$

    При `x=-1`, `y=4`, условие `x-y<0` также выполняется.

    Таким образом, система имеет два решения `(5;0)` и `(-1;4)`.  


    Итак, при решении уравнения с модулем мы выполнили следующие шаги:

    1) «раскрыли» модуль;

    2) решили системы для двух случаев;

    3) проверили для каждой из систем, удовлетворяет ли найденная пара чисел рассматриваемому случаю.

    Однако в системе уравнений может оказаться не один, а два, три или более модулей. В этом случае необходимо рассмотреть все возможные варианты раскрытия модулей.

    Пример 14

    Решите систему уравнений $$ \left\{\begin{array}{l}\left|x\right|+2y=\mathrm{1,5},\\ 2x-4\left|y\right|=3.\end{array}\right.$$

    Решение

    По определению модуля числа

    $$\left|x\right|=\left\{\begin{array}{l}x,\;\;\;x\geq0,\\-x,\;x<0,\end{array}\right.\;\;\left|y\right|=\left\{\begin{array}{l}y,\;\;\;\;y\geq0,\\-y,\;y<0.\end{array}\right.$$

    Значит нужно рассмотреть 4 случая:

    1)  `x>=0`, `y>=0`;

    2)  `x>=0`, `y<0`;

    3)  `x<0`, `y>=0`;

    4)  `x<0`, `y<0`.

    1 случай. `x>=0`, `y>=0`, система имеет вид:

    $$ \left\{\begin{array}{l}x+2y=\mathrm{1,5},\\ 2x-4y=3,\end{array}\right. \left\{\begin{array}{l}2x+4y=3,\\ 2x-4y=3,\end{array}\right. \left\{\begin{array}{l}8y=0,\\ x+2y=\mathrm{1,5},\end{array}\right.\left\{\begin{array}{l}x=\mathrm{1,5},\\ y=0.\end{array}\right.$$ 

    Оба полученные значения удовлетворяют заданным условиям:  `1,5>=0`, `0>=0`.

    2 случай. `x>=0`, `y<0` система имеет вид:

    $$ \left\{\begin{array}{l}x+2y=\mathrm{1,5},\\ 2x+4y=3,\end{array}\right. \left\{\begin{array}{l}x+2y=\mathrm{1,5},\\ x+2y=\mathrm{1,5},\end{array}\right. x+2y=\mathrm{1,5}$$.

    Получим равносильную систему, уравнения которой совпадают. Значит, исходная система равносильна каждому из данных уравнений. Следовательно, система имеет бесконечно много решений, где общие решения можно записывать в виде `(1,5-2y;y)`, где `y<0`. Очевидно, что при этом `x=1,5-2y>=0`. 

    3 случай.  `x<0`, `y>=0` система имеет вид:

    $$ \left\{\begin{array}{l}-x+2y=\mathrm{1,5},\\ 2x-4y=3,\end{array}\right.\left\{\begin{array}{l}-2x+4y=3,\\ 2x-4y=3,\end{array}\right. \left\{\begin{array}{l}-2x+4y+2x-4y=6,\\ -x+2y=\mathrm{1,5}.\end{array}\right.$$

    Первое уравнение не имеет решения, так как сводится к равенству `0=6`, значит система не имеет решений.

    4 случай.  `x<0`, `y<0` система имеет вид:

     $$ \left\{\begin{array}{l}-x+2y=\mathrm{1,5},\\ 2x+4y=3,\end{array}\right.\left\{\begin{array}{l}-2x+4y=3,\\ 2x+4y=3,\end{array}\right. \left\{\begin{array}{l}4x=0,\\ -x+2y=\mathrm{1,5},\end{array}\right. \left\{\begin{array}{l}x=0,\\ y=\mathrm{0,75}.\end{array}\right.$$

    Значение `x` не удовлетворяет заданному условию: неравенство `0<0` логично. Значит, и в этом случае решений тоже нет.

    Обобщая все 4 случая и учитывая, что пара чисел `(1,5;0)` имеет вид `(1,5-2y;y)` при `y=0`, мы можем записать множество решений исходной системы.

    Ответ

    `(1,5-2y;y)`, где `y<=0`.

    Алгоритм решения системы двух линейных уравнений с модулем

    1. Найти в уравнениях все выражения, содержащиеся под знаком модуля.

    2. Рассмотреть всевозможные комбинации случаев, когда каждое из этих выражений принимает неотрицательные и отрицательные значения.

    3. Для каждого возможного случая «раскрыть» модули, используя определение модуля.

    4. Решить все полученные системы.

    5. Для каждого случая отобрать те решение системы, которые ему удовлетворяют.

    Можно и другим способом решать, например:

    Пример 15

    Решите систему уравнений

    $$ \left\{\begin{array}{l}2\left|x\right|-3\left|y-1\right|=3,\\ 3x-2y=5.\end{array}\right.$$

    Решение

    Из второго уравнения системы выражаем `x` через `y`, получаем `x=(2y+5)/3`, подставляем это значение для `x` в первое уравнение системы, получаем:

    `2/3|2y+5|-3|y-1|=3`;  `4/3|y+5/2|-3|y-1|=3`.

    Выражение `y+5/2=0`  при `y=-5/2`. 

    Если  `y> -5/2`, то `|y+5/2|=y+5/2`;  если `y< -5/2`, то `|y+5/2|=-y-5/2`.

    Выражение  `y-1=0`, если  `y=1`.

    Если `y>1`,  то `|y-1|=y-1`,  а если `y<1`, то `|y-1|=1-y`.

    Если `y>=1`, то `|y-1|=y-1` и `|y+5/2|=y+5/2`, получаем уравнение:  

    `4/3(y+5/2)-3(y-1)=3`,  `4/3y+10/3-3y+3=3`,  `-5/3y=-10/3`, `y=2`.

    Тогда  `x=1/3(2*2+5)=3`. Число  `2>1`, так что пара `(3;2)` является решением системы.

    Пусть теперь  `-5/2 <=y<1`, тогда `|y-1|=1-y`; `|y+5/2|=y+5/2`.

    Для нахождения `y` получаем уравнение

    `4/3(y+5/2)+3y-3=3`, `4/3y+10/3+3y=6`,  `13/3y=8/3`,  `y=8/13`;

    `x=1/3(2y+5)=1/3(16/13+5)=27/13`.

    Число  `8/13` больше `(-5/2)`, но меньше, чем `1`, поэтому пара чисел `(27/13;8/13)` является решением системы.

    Если  `y< -5/2`, то  получаем  уравнение:

    `-4/3(y+5/2)+3y-3=3`,  `-4/3y-10/3+3y=6`,  `5/3y=28/3`, `y=28/5`.     

    Это значение больше, чем `(-5/2)`, поэтому решений нет.

    Таким образом, система имеет два решения `(3;2)` и `(27/13;8/13)`. 

    Теперь рассмотрим решение систем содержащих параметр.

    Системы линейных уравнений с параметром решаются теми же основными методами, что и обычные системы уравнений: метод подстановки, метод сложения уравнений и графический метод.

    Пример

    Рассмотрим систему уравнений $$ \left\{\begin{array}{l}ax+4y=2a,\\ x+ay=a.\end{array}\right.$$

    В этой системе, на самом деле, три переменные, а именно: `a`, `x`, `y`. Неизвестными считают `x` и `y`,  `a` называют параметром. Требуется найти решения `(x, y)` данной системы при каждом значении параметра `a`.

    Решение

    Покажем, как решают такие системы. Выразим переменную `x` из

    второго уравнения системы: `x=a-ay`. Подставляем это значение для `x` в первое уравнение системы, получаем:  

    `a(a-ay)+4y=2a`,

    `(2-a)(2+a)y=a(2-a)`.

    Если `a=2`, то получаем уравнение `0*y=0`. Этому уравнению удовлетворяет любое число `y`, и тогда `x=2-2y`, т. е. при `a=2` пара чисел `(2-2y;y)` является решением системы. Так как `y` может быть любым числом, то система при `a=2` имеет бесконечно много решений.

    Если `a=-2`, то получаем уравнение  `0*y=-8`. Это уравнение не имеет ни одного решения.

    Если теперь `a!=+-2`, то  `y=(a(2-a))/((2-a)(2+a))=a/(2+a)`,

    `x=a-ay=a-a^2/(2+a)=(2a)/(2+a)`.

    Ответ

    При `a=2` система имеет бесконечно много решений вида `(2-2y;y)`, где `y` - любое число;

    при `a=-2` система не имеет решений;

    при `a!=+-2`, система имеет единственное решение `((2a)/(2+a); a/(2+a))`.

    Мы решили эту систему и установили, при каких значениях параметра `a` система имеет одно решение, когда имеет бесконечно много решений и при каких значениях параметра `a` она не имеет решений.

    Пример 16

    При каких значениях параметра `a` система

    $$ \left\{\begin{array}{l}x+y=5,\\ x+y=a\end{array}\right.$$

    не имеет решений?

    Решение

    Левые части уравнений системы равны. Если будут равны и правые, то есть `a=5`, то получим `2` одинаковых уравнения `x+y=5`, и решением системы будут все пары `(x,y)`, которые удовлетворяют уравнению  `x+y=5`, т. е. все точки прямой `y=-x+5`.

    Но, если `a!=5`, то получим два уравнения, у которых левые части равны, а правые нет, это две параллельные прямые `y=-x+5` и `y=-x+a`. 

    Они не пересекаются, и значит, система не имеет решений.

    Ответ

    При `a!=5` система не имеет решений.

  • § 4. Решение задач с помощью систем уравнений
    Пример 17

    Путь от города до посёлка автомобиль проезжает за `2,5` часа. Если он увеличит скорость на `20` км/ч, то за `2` часа он проедет путь на `15` км больший, чем расстояние от города до посёлка. Найдите  расстояние от города до посёлка.

    Решение

    Обозначим через `S` расстояние между городом и посёлком и через `v` скорость автомобиля. Тогда для нахождения `S` получаем систему из двух уравнений

    $$ \left\{\begin{array}{l}\mathrm{2,5}v=S,\\ \left(v+20\right)2=S+15.\end{array}\right.$$

    Из первого уравнения `v=S/(2,5)=2/5S`, подставляем это значение `v` во второе уравнение:    

    `(2/5S+20)2=S+15`,  `1/5S=25`,  `S=125`.

    Ответ

    `125` км. 

    Пример 18

    Сумма цифр двузначного числа равна `15`. Если эти цифры поменять местами, то получится число, которое на `27` больше исходного. Найдите эти числа.

    Решение

    Пусть данное число `bar(ab)`, т. е. число десятков равно `a`, а число еди­ниц равно `b`. Из первого условия задачи имеем: `a+b=15`. Если из числа `bar(ba)` вычесть число `bar(ab)`, то получится  `27`, отсюда получаем второе уравнение: `10b+a-(10a+b)=27`.

    Решаем систему уравнений

              $$ \left\{\begin{array}{l}a+b=15,\\ -9a+9b=27,\end{array}\right.$$    $$ \left\{\begin{array}{l}a+b=15,\\ a-b=-3.\end{array}\right.$$                      

    Сложим уравнения последней системы, получаем:  `2a=12`,  `a=6`, тогда  `b=9`. Заданное число `69`, второе число `96`.

    Ответ

    `69` и `96`. ▲

    Пример 19

    Имеется сталь двух сортов с содержанием никеля `5%` и `40%`. Сколько нужно взять каждого из этих сортов стали, чтобы полу­чилось `140` т стали с содержанием никеля `30%`?

    Решение

    Обозначим через `x` массу стали с `5%` содержанием никеля и через   `y`  массу  стали  с  `40%`   содержанием  никеля.  Тогда `x+y=140`.   В `x` тоннах стали содержится `0,05x` никеля, а в  `y`  тоннах стали содержится `0,04y` никеля. Масса  никеля  равна `0,05x+0,4y` и  составляет `30%`  от `140` т,  т. е.  `3/10 140  "т"=42  "т"`. Получили второе уравнение

    `0,05x+0,4y=42`.

    Умножим обе части уравнения на `20`, получим: `x+8y=840`.

    Для нахождения `x` и `y` получили систему уравнений

    $$ \left\{\begin{array}{l}x+y=140,\\ x+8y=840.\end{array}\right.$$

    Вычтем из второго уравнения первое уравнение, получим:  `7y=700`,  `y=100`  тогда `x=140-y=40`.

    Ответ

    `40` т, `100` т. 

    Пример 20

    Оператор ЭВМ, работая с учеником, обрабатывает задачу за `2` ч `24` мин. Если оператор будет работать `2` ч, а ученик `1` ч, то будет выполнено `2/3` всей работы. Сколько времени потребуется оператору и ученику в отдельности на обработку задачи?

    Решение

    Обозначим всю работу за `1`, производительность оператора за `x` и производительность ученика за  `y`. Учитываем, что    

    `2` ч `24` мин`=2  2/5` ч `=12/5` ч.  

    Из первого условия задачи следует, что `(x+y)12/5=1`. Из второго условия задачи следует, что   `2x+y=2/3`. Получили систему уравнений

    $$ \left\{\begin{array}{l}\left(x+y\right)\frac{12}{5}=1,\\ 2x+y=\frac{2}{3}.\end{array}\right.$$

    Решаем эту систему методом подстановки:

    `y=2/3-2x`;  `(x+2/3-2x)12/5=1`;  `(2/3-x)12/5=1`;  `12/5x=8/5-1`;

    `12/5x=3/5`;  `x=1/4`;  `y=2/3-1/2=1/6`.

                    

    Ответ

    Для оператора понадобится `4` часа `(1:1/4=4)`, а ученику `– 6` часов `(1:1/6=6)`. 


  • §1. Тождественные преобразования. Решение уравнений

    В математике встречаются два вида математических выражений – числовые выражения и выражения с переменными.


    НаПример

    Числовыми являются выражения $$ \mathrm{3,8}-\mathrm{2,1}\left(\frac{5}{7}-\frac{3}{4}\right)$$, $$ 2+5(38:9)$$.


    Выражения вида `2x+1`, $$ 3{x}^{2}+5$$ называются выражениями с одной переменной. Выражение может содержать и несколько переменных.


    НаПример

    $$ 2{x}^{2}y+xy{z}^{3}$$, $$ 5{a}^{2}b{\left(x-y\right)}^{2}$$ , $$ 3{t}^{2}+{v}^{3}+1$$.


    Если в выражении с переменными подставить вместо переменных конкретные числа, то получим числовое выражение. После выполнения всех действий с числами получится число, которое называют значением выражения с переменными при выбранных значениях переменных.


    Значения переменных, при которых выражение имеет смысл, т. е. выполняются все указанные действия, называются допустимыми значениями переменных.


    Значения двух выражений с переменными при одних и тех же значениях переменных называются соответственными значениями выражений.


    НаПример

    Соответственными значениями выражений $$ 2{x}^{2}+1$$ и $$ 3{x}^{2}+5x+1$$ при `x=1` являются числа $$ 3$$ и $$ 9$$.


    Два выражения (числовые или с переменными), соединенные знаком «`=`», называют равенством. Числовые равенства могут быть верными и неверными. Равенства с переменными могут быть  верными при  одних значениях переменных и неверными при других значениях.


    Равенство, верное при всех допустимых значениях, входящих в него переменных, называется тождеством.


    Два выражения, принимающие равные соответственные значения при всех допустимых значениях переменных, называют тождественно равными.


    Замену одного выражения другим, ему тождественно равным, называют тождественным преобразованием или просто преобразованием выражения.


    Выражения, составленные из чисел и переменных с помощью конечного числа знаков арифметических операций (сложения,  вычитания, умножения, деления), называются рациональными выражениями. Рациональное выражение называется целым, если оно не содержит деления на выражение с переменными.


    Примерами целых выражений являются одночлены и многочлены.


    Одночленами называются числа, произведения чисел и натуральных степеней переменных.


    НаПример

    Выражения $$ 9,$$ $$ 25{x}^{2}$$ и $$ 34abx{y}^{4}$$ являются одночленами. 


    Для приведения одночлена к стандартному виду перемножают все входящие в него числовые множители, а произведения одинаковых переменных (или их степеней) заменяют степенью этой переменной.


    Числовой множитель называется коэффициентом одночлена, а сумму показателей степеней переменных называют степенью одночлена. Если одночлен является числом или произведением чисел, то его называют одночленом нулевой степени.


    НаПример

    Стандартным видом одночлена $$ \mathrm{0,3}bxy(-2){a}^{2}{x}^{2}{y}^{3}$$ является одночлен $$ -\mathrm{0,6}{a}^{2}b{x}^{3}{y}^{4},$$ число $$ (-\mathrm{0,6})$$ является его коэффициентом, степень одночлена равна $$ 10.$$ 


    Многочленом называют сумму одночленов. Одночлен является частным случаем многочлена.


    Одночлены называют подобными одночленами, если после их приведения к стандартному виду они оба либо совпадают, либо отличаются коэффициентами.


    НаПример

    Одночлены $$ 2a{x}^{2}y$$ и $$ -5a{x}^{2}y$$ являются подобными.


    Преобразование многочлена, при котором производится сложение и вычитание подобных членов, называется приведением подобных.


    НаПример

    $$ 2ax+3by-ax+\mathrm{0,5}by=ax+\mathrm{3,5}by.$$ 


    Для приведения многочлена к стандартному виду каждый из входящих в него одночленов заменяют одночленом стандартного вида и приводят подобные члены.


    Степенью многочлена называют наибольшую из степеней одночленов, составляющих многочлен после приведения его к стандартному виду.


    НаПример

    Стандартным видом многочлена $$ 2a{x}^{5}+x{y}^{3}+3x{y}^{3}-2a{x}^{5}+5$$ является многочлен $$ 4x{y}^{3}+5,$$ его степень равна $$ 4.$$ 


    Произведение двух многочленов равно сумме произведений каждого члена первого многочлена на каждый член второго многочлена.


    наПример

    $$ \left(x+y\right)\left(2{x}^{2}-y\right)=2{x}^{3}+2{x}^{2}y-xy-{y}^{2}.$$ 


    Разложить многочлен на множители означает представить его в виде произведения многочленов.


    При разложении многочлена на множители используют метод вынесения общего множителя за скобки и метод группировки членов.


    Пример 1

    Разложите на множители многочлен $$ 2{x}^{2}y+{y}^{2}-2{x}^{3}-yx.$$

    Решение

    Группируя члены многочлена (т. е. представляя его в виде суммы двух многочленов) и вынося общий множитель в каждой группе, получаем $$ 2{x}^{2}y+{y}^{2}-2{x}^{3}-yx=\left(2{x}^{2}y-2{x}^{3}\right)+\left({y}^{2}-yx\right)=2{x}^{2}\left(y-x\right)+y\left(y-x\right).$$ Видим, что многочлен `y-x` является общим множителем для обоих слагаемых. Вынося этот многочлен за скобки, окончательно получаем
     $$ 2{x}^{2}y+{y}^{2}-2{x}^{3}-yx=\left(y-x\right)\left(2{x}^{2}+y\right).$$


    При тождественных преобразованиях многочленов часто используют формулы, носящие название «формулы сокращенного умножения»


    1. Разность квадратов $$ {a}^{2}-{b}^{2}=(a-b)(a+b)$$
    2. Разность кубов  $$ {a}^{3}-{b}^{3}=(a-b)({a}^{2}+ab+{b}^{2})$$
    3. Сумма кубов   $$ {a}^{3}+{b}^{3}=(a+b)({a}^{2}-ab+{b}^{2})$$
    4. Квадрат суммы $$ (a+b{)}^{2}={a}^{2}+2ab+{b}^{2}$$
    5. Квадрат разности $$ (a-b{)}^{2}={a}^{2}-2ab+{b}^{2}$$
    6. Куб суммы $$ (a+b{)}^{3}={a}^{3}+3{a}^{2}b+3a{b}^{2}+{b}^{3}$$
    Куб разности  $$ (a-b{)}^{3}={a}^{3}-3{a}^{2}b+3a{b}^{2}-{b}^{3}$$


    Пример 2

    Разложите на множители многочлен $$ {x}^{3}+{x}^{2}+x-3.$$ 

    Решение

    Покажем, как, последовательно используя метод группировки, формулы 2 и 1 и метод вынесения общего множителя, можно разложить на множители данный многочлен:

    `x^3+x^2+x-3=(x^3-1)+(x^2-1)+(x-1)=`

    `=(x-1)(x^2+x+1)+(x-1)(x+1)+(x-1)=`

    `=(x-1)(x^2+x+1+x+1+1)=(x-1)(x^2+2x+3)`.


    Пример 3

    Разложите на множители многочлен $$ 3{x}^{2}{y}^{4}-24{x}^{5}y.$$

    Решение

    Сначала выносим общий множитель $$ 3{x}^{2}y$$ за скобку: 

    $$ 3{x}^{2}{y}^{4}-24{x}^{5}y=3{x}^{2}y\left({y}^{3}-8{x}^{3}\right). $$

    Затем к многочлену $$ {y}^{3}-8{x}^{3}$$ применим формулу для разности кубов:

     $$ {y}^{3}-8{x}^{3}=\left(y-2x\right)\left({y}^{2}+2xy+4{x}^{2}\right). $$

    В результате получим $$ 3{x}^{2}{y}^{4}-24{x}^{5}y=3{x}^{2}y(y-2x)\left({y}^{2}+2xy+4{x}^{2}\right). $$


    Пример 4

    Разложите на множители многочлен $$ 27{x}^{3}+{y}^{3}+3{y}^{2}+3y+1.$$

    Решение

    Заметим, что $$ {y}^{3}+3{y}^{2}+3y+1={\left(y+1\right)}^{3},$$ а $$ 27{x}^{3}={\left(3x\right)}^{3},$$ тогда получаем 

    $$ {\left(3x\right)}^{3}+{\left(y+1\right)}^{3}.$$ 

    Применяем формулу 3, получим 

    $$ (3x{)}^{3}+(y+1{)}^{3}=(3x+y+1){\left(9{x}^{2}-3x(y+1)+(y+1\right)}^{2}).$$ 

    Таким образом,

     $$ 27{x}^{3}+{y}^{3}+3{y}^{2}+3y+1=(3x+y+1)(9{x}^{2}-3xy-3x+{y}^{2}+2y+1). $$


    Пример 5

    Разложим на множители многочлен $$ {y}^{8}+{y}^{4}+1.$$ 

    Решение

    Покажем на этом примере ещё один способ разложения на множители. Прибавим и вычтем выражение $$ {y}^{4},$$ получаем: 

    $$ {y}^{8}+{y}^{4}+1+{y}^{4}-{y}^{4}={y}^{8}+2{y}^{4}+1-{y}^{4}={\left({y}^{4}+1\right)}^{2}-{\left({y}^{2}\right)}^{2}$$.

    А теперь применяем формулу для разности квадратов: 

    $$ {\left({y}^{4}+1\right)}^{2}-{\left({y}^{2}\right)}^{2}=\left({y}^{4}+1+{y}^{2}\right)\left({y}^{4}+1-{y}^{2}\right)$$.

  • §2. Выделение полного квадрата из квадратного трёхчлена
    Определение

    Выражения вида 2x2+3x+5, `-4x^2+5x+7` носят название квадратного трёхчлена. В общем случае квадратным трёхчленом называют выражение вида ax2+bx+c, где a,b,ca, b, c – произвольные числа, причём a0. 

    Рассмотрим квадратный трёхчлен  x2-4x+5. Запишем его в таком виде: x2-2·2·x+5.Прибавим к этому выражению 22 и вычтем 22, получаем: x2-2·2·x+22-22+5. Заметим, что x2-2·2·x+22=(x-2)2, поэтому

    x2-4x+5=(x-2)2-4+5=(x-2)2+1. 

    Преобразование, которое мы сделали, носит название «выделение полного квадрата из квадратного трёхчлена».

    Пример 1

    Выделите полный квадрат из квадратного трёхчлена 9x2+3x+1. 

    Решение

    Заметим, что 9x2=(3x)2, `3x=2*1/2*3x`. Тогда  

    `9x^2+3x+1=(3x)^2+2*1/2*3x+1`. 

    Прибавим и вычтем к полученному выражению `(1/2)^2`, получаем  

    `((3x)^2+2*1/2*3x+(1/2)^2)+1-(1/2)^2=(3x+1/2)^2+3/4`.  

    Покажем, как применяется метод выделения полного квадрата из квадратного трёхчлена для разложения квадратного трёхчлена на множители.

    Пример 2

    Разложите на множители квадратный трёхчлен 4x2-12x+5.

    Решение

    Выделяем полный квадрат из квадратного трёхчлена: 

    2x2-2·2x·3+32-32+5=2x-32-4=(2x-3)2-22. 

    Теперь применяем формулу a2-b2=(a-b)(a+b), получаем: 

    (2x-3-2)(2x-3+2)=(2x-5)(2x-1).  

    Пример 3

    Разложите на множители квадратный трёхчлен -9x2+12x+5.

    Решение

    -9x2+12x+5=-9x2-12x+5. Теперь замечаем, что 9x2=3x2, -12x=-2·3x·2. 

    Прибавляем к выражению 9x2-12x слагаемое 22, получаем:

    -3x2-2·3x·2+22-22+5=-3x-22-4+5=-3x-22+4+5==-3x-22+9=32-3x-22.

    Применяем формулу для разности квадратов, имеем:

     -9x2+12x+5=3-3x-23+(3x-2)=(5-3x)(3x+1).

    Пример 4

    Разложите на множители квадратный трёхчлен 3x2-14x-5.

    Решение

    Мы не можем представить выражение 3x2 как квадрат какого-то выражения, т. к. ещё не изучали этого в школе. Это будете проходить позже, и уже в Задании №4 будем изучать квадратные корни. Покажем, как можно разложить на множители заданный квадратный трёхчлен:

    `3x^2-14x-5=3(x^2-14/3 x-5/3)=3(x^2-2*7/3 x+(7/3)^2-(7/3)^2-5/3)=`

    `=3((x-7/3)^2-49/9-5/3)=3((x-7/3)^2-64/9)=3((x-7/3)^2-8/3)^2)=`

    `=3(x-7/3-8/3)(x-7/3+8/3)=3(x-5)(x+1/3)=(x-5)(3x+1)`.

    Покажем, как применяется метод выделения полного квадрата для нахождения наибольшего или наименьшего значений квадратного трёхчлена.
    Рассмотрим квадратный трёхчлен x2-x+3.  Выделяем полный квадрат:

    `(x)^2-2*x*1/2+(1/2)^2-(1/2)^2+3=(x-1/2)^2+11/4`. Заметим, что при `x=1/2` значение квадратного трёхчлена равно `11/4`, а при `x!=1/2` к значению `11/4` добавляется положительное число, поэтому получаем число, большее `11/4`. Таким образом, наименьшее значение квадратного трёхчлена равно `11/4` и оно получается при `x=1/2`.     

    Пример 5

    Найдите наибольшее значение квадратного трёхчлена   -16x2+8x+6. 

    Решение

    Выделяем полный квадрат из квадратного трёхчлена: -16x2+8x+6=-4x2-2·4x·1+1-1+6=-4x-12-1+6==-4x-12+7. 

    При `x=1/4` значение квадратного трёхчлена равно 7, а при `x!=1/4` из числа 7 вычитается положительное число, то есть получаем число, меньшее  7. Таким образом, число 7 является наибольшим значением квадратного трёхчлена, и оно получается при `x=1/4`.  

    Пример 6

    Разложите на множители числитель и знаменатель дроби `{x^2+2x-15}/{x^2-6x+9}` и сократите эту дробь.

    Решение

    Заметим, что знаменатель дроби x2-6x+9=x-32. Разложим числитель дроби на множители, применяя метод выделения полного квадрата из квадратного трёхчлена.

    x2+2x-15=x2+2·x·1+1-1-15=x+12-16=x+12-42==(x+1+4)(x+1-4)=(x+5)(x-3).  

    Данную дробь привели к виду `{(x+5)(x-3)}/(x-3)^2` после сокращения на (x-3) получаем `(x+5)/(x-3)`. 

    Пример 7

    Разложите многочлен x4-13x2+36 на множители.

    Решение

    Применим к этому многочлену метод выделения полного квадрата.

    `x^4-13x^2+36=(x^2)^2-2*x^2*13/2+(13/2)^2-(13/2)^2+36=`

    `=(x^2-13/2)^2-169/4+36=(x^2-13/2)^2-25/4=`

    `=(x^2-13/2)^2-(5/2)^2=(x^2-13/2-5/2)(x^2-13/2+5/2)=`

    `=(x^2-9)(x^2-4)=(x-3)(x+3)(x-2)(x+2)`.

    Пример 8

    Разложите на множители многочлен 4x2+4xy-3y2.

    Решение

    Применяем метод выделения полного квадрата. Имеем: 

    (2x)2+2·2x·y+y2-y2-3y2=(2x+y)2-2y2==(2x+y+2y)(2x+y-2y)=(2x+3y)(2x-y).     

    Пример 9

    Применяя метод выделения полного квадрата, разложите на множители числитель и знаменатель и сократите дробь `{8x^2+10x-3}/{2x^2-x-6}`. 

    Решение

    `8x^2+10x-3=8(x^2+10/8 x-3/8)=8(x^2+2*5/8 x+(5/8)^2-(5/8)^2-3/8)=`

    `=8((x+5/8)^2-25/64-24/64)=8((x+5/8)^2-(7/8)^2)=`

    `=8(x+5/8+7/8)(x+5/8-7/8)=8(x+12/8)(x-2/8)=`

    `=8(x+3/2)(x-1/4)=(2x+3)(4x-1)`.

    Преобразуем знаменатель дроби:

    `2x^2-x-6=2(x^2-x/2-6/2)=2(x^2-2*1/4 x+(1/4)^2-(1/4)^2-6/2)=`

    `=2((x-1/4)^2-(7/4)^2)=2(x-1/4-7/4)(x-1/4+7/4)=`

    `=2(x-2)(x+3/2)=(x-2)(2x+3)`.

    Имеем: `{(2x+3)(4x-1)}/{(x-2)(2x+3)}={4x-1}/{x-2}`.



  • §3. Уравнения с одной переменной
    Определение

    Равенство, содержащее переменную, называют уравнением с одной переменной или уравнением с одним неизвестным.

    Например, уравнением с одной переменной является равенство $$ 2(3x+5)=4x-1.$$ 

    Определение

    Корнем или решением уравнения называется значение переменной, при котором уравнение обращается в верное числовое равенство.

    Например, число $$ 1$$ является решением уравнения $$ 3x+5=9x-1.$$ Уравнение $$ {x}^{2}+1=0$$ не имеет решений, т. к. левая часть уравнения всегда больше нуля. Уравнение $$ (x-1)(x+2)=0$$ имеет два корня: $$ {x}_{1}=1$$ и $$ {x}_{2}=-2.$$ 

    Решить уравнение – значит найти все его корни или доказать, что корней нет.

    Определение

    Уравнения называются равносильными, если каждое решение первого уравнения является решением второго и каждое решение второго уравнения является решением первого или если оба уравнения не имеют решений.

    При решении уравнений используют следующие свойства

    Свойства

    1) если в уравнении перенести слагаемое из одной части в другую, изменив его знак, то получится уравнение, равносильное данному;

    2) если обе части уравнения умножить или разделить на одно и то же отличное от нуля число, то получится уравнение, равносильное данному.

    определение

    Уравнение вида $$ ax=b,$$ где $$ x - $$переменная, $$ a$$ и  $$ b - $$ некоторые числа, называется линейным уравнением с одной переменной. 

    Если $$ a\ne 0$$, то уравнение имеет единственное решение $$ x=\frac{b}{a}.$$ 

    Если $$ a=0$$ и $$ b=0,$$ то уравнению удовлетворяет любое значение $$ x,$$ а если $$ a=0,$$ а $$ b\ne 0,$$ то уравнение не имеет решений, т. к.  $$ 0·x=b$$ не выполняется ни при одном значении переменной.

    Пример 1

    Решите уравнение $$ \mathrm{2,5}x-(x+1)=(3x-1)-2x+1$$.

    Решение

    Раскроем скобки в обеих частях уравнения, перенесем все слагаемые с $$ x$$ в левую часть уравнения, а слагаемые, не содержащие $$ x,$$ в правую часть, получаем: 

    $$ \mathrm{2,5}x-x-3x+2x=1-1+1, $$

     $$ \mathrm{0,5}x=1,$$ $$ x=2.$$

    Ответ
    `2`.
    Пример 2

    Решите уравнение:  

    а) $$ 2{x}^{2}-3x=0$$; 

    б) $$ {x}^{3}-2{x}^{2}-9x+18=0$$; 

    в) $$ {x}^{2}+5x+6=0$$.

    Решение

    а) Преобразуем уравнение: $$ x(2x-3)=0.$$ Произведение равно нулю, если один из сомножителей равен нулю, получаем $$ {x}_{1}=0,$$ $$ {x}_{2}=\frac{3}{2}.$$

    Ответ 
    $$ 0; \frac{3}{2}.$$

    б) Разложим на множители левую часть уравнения:

    $$ {x}^{2}(x-2)-9(x-2)=(x-2)({x}^{2}-9)=(x-2)(x-3)(x+3).$$ 

    Отсюда видно, что решениями этого уравнения являются числа $$ {x}_{1}=2,$$ $$ {x}_{2}=3,$$ $$ {x}_{3}=-3.$$

    Ответ 

    $$ 2; 3; -3.$$

    в) Это уравнение называется квадратным, вы подробно изучите эти уравнения в 8-м классе. Но покажем, как можно решать такие уравнения. Представим $$ 5x$$ как $$ 2x+3x,$$ тогда имеем: 

    $$ {x}^{2}+2x+3x+6=0,$$   

    $$ x(x+2)+3(x+2)=0, (x+2)(x+3)=0,$$  

    отсюда видно, что $$ {x}_{1}=-2,$$ $$ {x}_{2}=-3.$$  

    Это уравнение можно решать и методом выделения полного квадрата. Представим выражение $$ 5x=2·\frac{5}{2}x.$$  И прибавим и вычтем в левой части уравнения число $$ \frac{25}{4},$$ получаем:

    `x^2+2*5/2*x+25/4-25/4+6=0`,

    `(x+5/2)^2-25/4+6=0`,

    `(x+5/2)^2-1/4=0`,

    `(x+5/2)^2-(1/2)^2=0`,

    `(x+5/2-1/2)(x+5/2+1/2)=0`,

    `(x+2)(x+3)=0`.

    Откуда следует, что $$ {x}_{1}=-2$$ и $$ {x}_{2}=-3.$$

    Ответ

    $$ -2; -3.$$

    Пример 3

    Являются ли данные уравнения равносильными:
    а) $$ \left|x-1\right|=2$$ и $$ 2x-5=1;$$ 

    б) $$ \frac{(x-3)(x+7)}{x-3}=0$$ и $$ (x-3)(x+7)=0.$$

    Решение

    а) Если $$ \left|x-1\right|=2,$$ то $$ x-1=2, x=3, $$или $$ x-1=-2, x=-1.$$ Первое уравнение имеет два решения: $$ -1$$ и $$ 3.$$ 

    Второе уравнение имеет одно решение $$ x=3.$$ Число $$ \left(-1\right)$$ является решением первого уравнения и не является решением второго уравнения, следовательно, данные уравнения не являются равносильными.

    б) Число $$ x=3$$ является решением второго уравнения и не является решением первого уравнения, т. к. при $$ x=3$$ не определена дробь, стоящая в левой части первого уравнения, поэтому данные уравнения не являются равносильными.

  • §4. Модуль числа
    Определение Модуля Числа

    Если число положительное, то его модуль равен самому числу. Например, `|2,5|=2,5`; `|1 3/4|=1 3/4`.  

    Если число отрицательное, то его модуль равен противоположному числу. Например, `|-3,1|=3,1`; `|-2 3/7|=2 3/7`. 

    Модуль нуля равен нулю.
    Запишем определение модуля таким образом: $$\left | x \right |= \left\{\begin{matrix}
    x, если {}      x\geq 0,\\
    -x, если    {}   x<0.
    \end{matrix}\right.$$

    Докажем некоторые свойства модуля.
         

    Свойство 1

    Для любого числа $$ x$$ выполняется условие $$ \left|x\right|\ge 0$$. 

    Действительно, если $$ x>0$$, то $$ \left|x\right|=x$$ и тогда $$ \left|x\right|>0$$. 

    Если  $$ x<0$$, то $$ \left|x\right|=-x$$, но $$ -x>0$$, значит $$ \left|x\right|>0$$. И если  $$ x=0$$, то $$ \left|x\right|=0$$.

    Таким образом, $$ \left|x\right|\ge 0$$ для любого $$ x$$. При этом заметим, что $$ \left|x\right|>0$$, если $$ x\ne 0$$, и $$ \left|x\right|=0$$, если $$ x=0$$.

         

    Пример 1

    При каких значениях $$ x$$ выполняются равенства:

    а) $$ \left|x\right|=5$$ ;  

    б) $$ \left|x\right|=-3$$;   

    в) $$ \left|x-1\right|=2$$?

    Решение

    а) Если $$ x$$ положительное, то $$ x=5$$; если $$ x$$ отрицательное, то $$ -x=5$$, т. е. $$ x=-5$$.

    б) По свойству $$ 1$$ выполняется условие $$ \left|x\right|\ge 0$$, а у нас условие $$ \left|x\right|=-3<0$$. Следовательно, не существует чисел, для которых выполнялось бы данное условие.
    в) По определению модуля числа следует, что если $$ x-1\ge 0$$, т. е. $$ x\ge 1$$, то $$ \left|x-1\right|=x-1=2$$,  отсюда следует, что $$ x=3$$. Если же $$ x<1$$, то $$ x-1<0$$ и $$ \left|x-1\right|=-(x-1)$$, получаем равенство $$ -x+1=2$$, $$ -x=1$$, $$ x=-1$$. В дальнейшем мы такие уравнения будем решать коротко, а именно, рассуждаем так: если модуль какого-то выражения равен $$ 2$$, то либо это выражение равно $$ 2$$, либо равно $$ (-2)$$. Если $$ \left|x-1\right|=2$$, то получаем два случая: $$ x-1=2$$, $$ x=3$$ и $$ x-1=-2$$, $$ x=-1$$.       

    Свойство 2

    Для любых чисел $$ x$$ и $$ y$$ выполняется условие

    $$ \left|xy\right|=\left|x\right|·\left|y\right|$$.

    Доказательство

    Если числа $$ x$$ и  $$ y$$  положительные, то $$ xy>0$$,  $$ \left|xy\right|=xy$$, $$ \left|x\right|=x$$, $$ \left|y\right|=y$$,    получаем верное равенство $$ xy=xy$$. 

    Если числа $$ x$$ и $$ y$$ отрицательные, то $$ xy>0$$,  $$ \left|xy\right|=xy$$,  $$ \left|x\right|=-x$$$$ \left|y\right|=-y$$, получаем верное равенство $$ xy=(-x)(-y)$$,  $$ xy=xy$$.

    Если $$ x>0$$, а $$ y<0$$, то $$ xy<0$$, $$ \left|xy\right|=-xy,$$ $$ \left|x\right|=x$$, $$ \left|y\right|=-y$$, получаем верное равенство $$ -xy=-xy$$.

    Аналогично доказывается, если $$ x<0$$,  a $$ y>0$$. 

    Если одно из чисел $$ x$$ и $$ y$$ равно нулю, то обе части равенства $$ \left|xy\right|=\left|x\right|·\left|y\right|$$равны нулю, т. е. равенство верное.
         

    Пример 2

    При каких значениях $$ x$$ верно равенство $$ \left|-5x-10\right|=15$$. 

    Решение
    -5x-10=-5(x+2)=-5·x+2=5x+2\left | -5x-10 \right |=\left | -5(x+2) \right |=\left | -5 \right |\cdot \left | x+2 \right |=5\left | x+2 \right |.
    Таким образом, получили равенство $$ 5\left|x+2\right|=15$$, $$ \left|x+2\right|=3$$, отсюда следует, что

    $$ x+2=3$$, $$ x=1$$ и $$ x+2=-3$$, $$ x=-5$$.

    Ответ

     $$ 1$$; $$ -5$$. 

    Аналогично свойству $$ 2$$ можно доказать свойство `|x/y|=|x|/|y|`. Исходя из определения модуля числа, можно доказать, что для любого числа $$ x$$ верно равенство $$ \left|x\right|=\left|-x\right|$$.

         

    Пример 3

    Решите уравнение `|-3x-1|-2x=2`.

    Решение

    `|-3x-1|=|-3(x+1/3)|=|-3|*|x+1/3|=3|x+1/3|`. 

    После этих преобразований получили уравнение `3*|x+1/3|-2x=2`. 

    Из определения модуля следует, что `|x+1/3|=x+1/3`,  если `x+1/3>=0`,  т. е.  `x>=-1/3` и `|x+1/3|=-x-1/3`,  если `x<-1/3`.

    а) Если `x>=-1/3`, то получаем уравнение `3(x+1/3)-2x=2`, `x+1=2`, `x=1`.  Число `1> -1/3`, поэтому число `x=1` является решением уравнения.

    б) Если `x<-1/3`, то получаем уравнение `3(-x-1/3)-2x=2`,  `-5x=3`, `x=-3/5<-1/3`.

    Ответ
     `-3/5`;  `1`. 
         
    Пример 4

    Решите уравнение $$ \left|x-1\right|+\left|x+1\right|=2$$. 

    Решение

    Напомним определение модуля числа:  $$ \left|a\right|=\left\{\begin{array}{l}a, a\ge 0,\\ -a, a<0.\end{array}\right.$$

    В данном уравнении под знаком модуля стоят числа $$ x-1$$ и $$ x+1.$$ 

    Если $$ x$$ меньше, чем $$ -1,$$ то число $$ x+1$$ отрицательное, тогда $$ \left|x+1\right|=-x-1.$$ 

    А если $$ x>-1,$$ то $$ \left|x+1\right|=x+1.$$ При $$ x=-1$$ имеем $$ \left|x+1\right|=0.$$ Таким образом, $$ \left|x+1\right|=\left\{\begin{array}{l}x+1, x\ge -1,\\ -x-1, x<-1.\end{array}\right.$$

    Аналогично $$ \left|x-1\right|=\left\{\begin{array}{l}x-1, x\ge 1,\\ -x+1, x<1.\end{array}\right.$$

    а) Рассмотрим наше уравнение при $$ x\le -1,$$ оно равносильно уравнению $$ -x+1-x-1=2,$$ $$ -2x=2,$$ $$ x=-1.$$ Это число принадлежит множеству $$ x\le -1.$$

    б) Пусть теперь `-1<x<=1`, тогда данное уравнение равносильно уравнению `-x+1+x+1=2`, `0*x=0`, последнему уравнению удовлетворяет любое число, но так как мы рассматриваем множество `-1<x<=1`, значит, этому уравнению удовлетворяют все числа из этого множества.

    в) Рассмотрим случай `x>1`. Уравнение равносильно уравнению `x-1+x+1=2`, `x=1`. Число `x=1`  мы получили уже в пункте б).

    Ответ

    Уравнению удовлетворяют все числа, удовлетворяющие условию `-1<=x<=1`.
    Пример 5

    Решите уравнение: $$ \left|11x+5\right|=\left|9x+13\right|.$$

    Решение

    Если модули чисел равны, то эти числа либо равны, либо отличаются знаком. Если числа равны, то получаем уравнение: 

    $$ 11x+5=9x+13,$$  $$ 2x=8,$$  $$ x=4.$$

    Если числа отличаются знаком, то получаем уравнение:

    $$ 11x+5=-9x-13,$$  $$ 20x=-18,$$   $$ x=-\mathrm{0,9}.$$

    Ответ
    $$ 4; -\mathrm{0,9}.$$ 
    Пример 6

    Решите уравнение: $$ \left|5-\left|x+6\right|\right|+1=6$$.

    Решение

    Перенесём `1` в правую часть, получим $$ \left|5-\left|x+6\right|\right|=5$$. Теперь по определению модуля  рассмотрим два случая: `5-|x+6|=5` и `5-|x+6|=-5`.

    Решим каждое из них.  `-|x+6|=5-5`, `|x+6|=0`, если модуль равен нулю, то выражение под модулем равно нулю `|x+6|=0`, `x=-6`.

    Решим второе уравнение: `-|x+6|=-10`, `|x+6|=10`, опять получим два случая: `x+6=10` и `x+6=-10`. Решим их: `x=4` и `x=-16`. 

    Ответ
    `-6`; `4`; `-16`.
  • §5. Уравнения с параметром

    Рассмотрим уравнение (a-3)(a-2)·x=(a-3)(a+5). Такие уравнения носят название «уравнения с параметром». Здесь x - неизвестное , а a - параметр. Требуется найти решение x при любых значениях параметра a.
    Если a=3, то уравнение принимает вид: 0·x=0, этому уравнению удовлетворяет любое число x, т. е. в этом случае уравнение имеет бесконечно много решений.
    Если a=2, то уравнение принимает вид: 0·x=-7, это уравнение не имеет решений.
    Если a3 и a2, то обе части уравнения можно разделить на (a-3)(a-2), тогда получаем: `x={(a-3)(a+5)}/{(a-3)(a-2)}={a+5}/{a-2}`. Таким образом, если a3 и a2, то уравнение имеет единственное решение и при этом  `x={a+5}/{a-2}`.

    Пример 1

    Найдите значение параметра `a`, при котором уравнение `|x+a|=a-4` имеет один корень.

    Решение

    Для того чтобы уравнение имело один корень необходимо чтобы правая часть была равна нулю: `a-4=0`, то есть `a=4`.

    Ответ

    При `a=4` уравнение имеет один корень.

    Пример 2

    Найдите значение параметра `a`, при котором уравнение `(a-2)x=2` не имеет корней.

    Решение

    Если `a=2`, то уравнение принимает вид: `0*x=2`, это уравнение не имеет решений.

    Ответ

    При `a=2` уравнение не имеет корней.

    Пример 3

    Найдите целые значения параметра `a`, при которых корень уравнения `ax=-8` удовлетворяет неравенству `1,5<|x|<4`.

    Решение

    Из уравнения `x=-8/a`, `1,5<|-8/a|<4`, `a=4`, `a=-4`, `a=3`, `a=-3`, `a=5`, `a=-5`.

    Ответ
    `a={-5,-4,-3,3,4,5}`.





  • §6. Линейная функция и её график

    Функция вида $$ y=kx+b$$, где `k` и `b` - произвольные числа, называется линейной функцией. Графиком линейной функции является прямая.

    Рассмотрим частные случаи функции `y=kx+b`, когда `k` и (или) `b` принимают значения равные нулю:

    1) если `b=0`, то y=kx-y=kx- прямая пропорциональность, график проходит через начало координат;

    2) если` k=0`, то `y=b`, графиком является прямая, параллельная оси `Ox`;

    3) если `b=0`,  `k=0`, то `y=0`, то графиком является ось `Ox`.

    Для построения графика достатояно указать две точки, принадлежащие прямой, и затем через эти две точки провести прямую. 

    Пример 1

    Постройте график функции: а)  $$ y=2x+3$$;  б) $$ y=2$$.

    Решение

    а) При $$ x=0$$;  $$ y=3$$; при $$ x=1$$;  $$ y=5$$. Проводим прямую через точки $$ (0; 3)$$ и $$ (1; 5)$$.  График прямой приведён на рисунке 1.

    б) Для любого значения $$ x$$ значение $$ y=2$$. Графиком этой функции является прямая, параллельная оси $$ Ox$$ и проходящая через точку $$ (0; 2)$$. График этой функции приведён на рисунке 2.

                     

    График линейной функции `y=kx+b`, где `k` и `b` - произвольные числа, может быть получен из графика функции `y=kx` путём его параллельного переноса вдоль оси `Oy` на `b` единиц вверх, если `b` - положительно, или `|b|` единиц вниз, если `b` - отрицательно.

    В примере 1а) `y=2x+3`, при построении графика можно сначала построить график функции `y=2x`, а затем параллельным переносом вдоль оси `Oy` на `3` единицы вверх перенести график (рис. 3).

    Число `k` называют угловым коэффициентом прямой – графика функции `y=kx+b`. Если `k>0` то угол наклона прямой `y=kx+b` к оси `x` острый; если `k<0` то угол наклона тупой.

    Если угловые коэффициенты прямых, являющихся графиками двух линейных функций, различны, то эти прямые пересекаются, а если угловые коэффициенты одинаковы, то прямые параллельны.

    Построим теперь график функции $$ y=\left|x\right|$$. 

    Из определения модуля числа следует, что $$ y=\left\{\begin{array}{c}x, \mathrm{если} x>0,\\ 0, \mathrm{если} x=0,\\ -x, \mathrm{если} x<0.\end{array}\right.$$

    При $$ x\ge 0  y=x$$, графиком функции при $$ x\ge 0$$ является часть прямой $$ y=x$$. А при $$ x<0$$ графиком функции является часть прямой $$ y=-x$$. График функции $$ y=\left|x\right|$$ приведён на рисунке 3а.

    Пример 2

    Постройте график функции $$ y=\left|x+1\right|-\left|x-2\right|$$.

    Решение

    Выражение $$ x-2$$ равно нулю при $$ x=2$$. Если $$ x>2$$, то $$ x-2>0$$, поэтому $$ \left|x-2\right|=x-2$$. А если $$ x<2$$,  то $$ x-2<0$$, тогда $$ \left|x-2\right|=-(x-2)=-x+2$$.  Выражение $$ x+1$$  равно нулю, если $$ x=-1$$. 

    Если $$ x>-1$$, то $$ x+1>0$$, тогда $$ \left|x+1\right|=x+1$$. 

    А если $$ x<-1$$, то $$ x+1<0$$, тогда $$ \left|x+1\right|=-(x+1)=-x-1$$. Пусть $$ x\ge 2$$, тогда $$ \left|x-2\right|=x-2$$, $$ \left|x+1\right|=x+1$$, поэтому $$ y=x+1-(x-2)=3$$.

    Если -1<x<2-1<x<2, то x-2=2-x\left|x-2\right|=2-xx+1=x+1\left|x+1\right|=x+1, тогда y=x+1-2+x=2x-1y=x+1-2+x=2x-1.

    Если $$ x\le -1$$, то x+1=-x-1\left|x+1\right|=-x-1x-2=2-x\left|x-2\right|=2-x, тогда y=-x-1-2+x=-3y=-x-1-2+x=-3.  

    Таким образом, y=3, если x2;2x-1, если -1<x<2;-3; если x-1.y=\left\{\begin{array}{l}3, \mathrm{если} x\ge 2;\\ 2x-1, \mathrm{если} -1<x<2;\\ -3; \mathrm{если} x\le -1.\end{array}\right.

    Заметим, что прямая $$ y=2x-1$$ проходит через точки $$ (-1; -3)$$ и $$ (2; 3)$$.  График данной функции приведён на рисунке 4.

    Пример 3


    Постройте график функции $$ y=\left\{\begin{array}{l}\left|x-3\right|, x\ge 0;\\ \left|x+4\right|-1, \text{если} x<0.\end{array}\right.$$

    Используя график функции, определите, сколько будет точек пересечения графика функции с прямой $$ y=a$$ при различных значениях параметра $$ a$$.

    Решение
    Из определения модуля следует, что  $$ \left|x-3\right|=\left\{\begin{array}{l}3-x, \text{если} x\in \left[0; 3\right];\\ x-3, \text{если} x>3.\end{array}\right.$$

    Далее $$ \left|x+4\right|-1=\left\{\begin{array}{l}-4-x-1,\text{ если} x\le -4;\\ 4+x-1, \text{если} x\in (-4; 0).\end{array}\right.$$

    График данной функции приведён на рисунке 5.

    Если $$ a<-1$$, то прямая $$ y=a$$ не пересекает график данной функции.
    Если $$ a=-1$$, то прямая пересекает график функции в точке $$ (-4; -1)$$. 

    Если $$ a\in (-1; 0)$$, то будет две точки пересечения. 

    Если $$ a=0$$, то прямая $$ y=0$$ пересекает график функции в точках $$ (-5; 0)$$, $$ (-3; 0)$$, $$ (3; 0)$$.

    Если $$ a\in (0; 3)$$, то получается $$ 4$$ точки пересечения.
    Если $$ a=3$$, то будет $$ 3$$ точки пересечения.
    Если $$ a>3$$, то будет $$ 2$$ точки пересечения.

  • Вступление

    Дорогие ребята! Поздравляем вас с поступлением в заочную физико-техническую школу МФТИ. Вы получили первое задание по математике, в нем мало сложных задач, советуем вам внимательно изучить разработку, без ошибок ответить на контрольные вопросы и постараться решить предложенные вам задачи. Мало знать, как решить задачу, главное – уметь довести решение до конца и при этом не допустить арифметических ошибок. Не огорчайтесь, если вы не сможете справиться со всеми задачами. Вам вышлют решение задания, вы сможете посмотреть, как следует решать ту или иную задачу. В некоторых задачах мы указываем название учебного заведения (например, МГУ или МФТИ). Это означает, что данная задача предлагалась на вступительных экзаменах.

    Обратите внимание, как оформлены решения в присланных вам заданиях и как записывают решения задач в ваших учебниках и задачниках.

    Грамотный человек должен быть грамотным во всех предметах. Не забывайте о правилах грамматики, особенно о точках и запятых в ваших решениях. Постарайтесь аккуратно оформлять ваши решения.

    Мы очень надеемся, что поможем вам в изучении математики. Рады будем видеть вас в будущем студентами нашего института.

    Желаем вам больших успехов в этом году!

  • 5. Количество теплоты. Теплоёмкость

    Внутренняя энергия тела зависит от его температуры и внешних условий - объёма и т. д. Если внешние условия остаются неизменными, т. е. объём и другие параметры постоянны, то внутренняя энергия тела зависит только от его температуры.

    Изменить внутреннюю энергию тела можно, не только нагревая его в пламени или совершая над ним механическую работу (без изменения положения тела, например, работа силы трения), но и приводя его в контакт с другим телом, имеющим температуру, отличную от температуры данного тела, т. е. посредством теплопередачи.

    Количество внутренней энергии, которое тело приобретает или теряет в процессе теплопередачи, и называется «количеством теплоты». Количество теплоты принято обозначать буквой `Q`. Если внутренняя энергия тела в процессе теплопередачи увеличивается, то теплоте приписывают знак плюс, и говорят, что телу сообщили теплоту `Q`. При уменьшении внутренней энергии в процессе теплопередачи теплота считается отрицательной, и говорят, что от тела отняли (или отвели) количество теплоты `Q`.

    Количество теплоты можно измерять в тех же единицах, в которых измеряется и механическая энергия. В системе СИ - это `1` джоуль. Существует и другая единица измерения теплоты - калория. Калория - это количество теплоты, необходимое для нагревания `1` г воды на `1^@ "C"`.

    Соотношение между этими единицами было установлено Джоулем: `1` кал `= 4,18` Дж. Это означает, что за счёт работы в `4,18` кДж температура `1` килограмма воды повысится на `1` градус.

    Количество теплоты, необходимое для нагревания тела на `1^@ "C"`, называется теплоёмкостью тела. Теплоёмкость тела обозначается буквой `C`. Если телу сообщили небольшое количество теплоты `Delta Q`, а температура тела изменилась на `Delta t` градусов, то                         

    `C = (DeltaQ)/(Deltat)`.  (1.1)

    Опыт показывает, что при обычных температурах `(200-500 sf"К")` теплоёмкость большинства твёрдых и жидких тел почти не зависит от температуры. Для большинства расчётов будем принимать, что теплоёмкость какого-нибудь вещества есть величина постоянная.

    Кроме теплоёмкости тела `C` вводят ещё удельную теплоёмкость `c` - теплоёмкость единицы массы вещества. Именно эта величина обычно приводится в справочниках физических величин. Удельная теплоёмкость `c` связана с теплоёмкостью тела `C` и массой `m` тела соотношением:

    `C = c*m`. (1.2)

    Приведённые формулы позволяют рассчитать, какое количество теплоты `Q` надо передать телу массы `m`, чтобы повысить его температуру от значения `t_1` до значения `t_2`:

    `Q=C*Deltat=C*(t_2 - t_1)=c*m*(t_2 - t_1 )`. (1.3)

    Если тело окружить оболочкой, плохо проводящей тепло, то температура тела, если оно предоставлено самому себе, будет оставаться в течение длительного времени практически постоянной. Таких идеальных оболочек в природе, конечно, не существует, но можно создать оболочки, которые по своим свойствам приближаются к таковым.

    Примерами могут служить обшивка космических кораблей, сосуды Дьюара, применяемые в физике и технике. Сосуд Дьюара представляет собой стеклянный или металлический баллон с двойными зеркальными стенками, между которыми создан высокий вакуум. Стеклянная колба домашнего термоса тоже является сосудом Дьюара.

    Теплоизолирующей является оболочка калориметра – прибора, позволяющего измерять количество теплоты. Калориметр представляет собой большой тонкостенный стакан, поставленный на кусочки пробки внутрь другого большого стакана так, чтобы между стенками оставался слой воздуха, и закрытый сверху теплонепроводящей крышкой.

    Если в калориметре привести в тепловой контакт два или несколько тел, имеющих различные температуры, и подождать, то через некоторое время внутри калориметра установится тепловое равновесие. В процессе перехода в тепловое равновесие одни тела будут отдавать тепло (суммарное количество теплоты `Q_(sf"отд")`), другие будут получать тепло (суммарное количество теплоты `Q_(sf"пол")`). А так как калориметр и содержащиеся в нём тела не обмениваются теплом с окружающим пространством, а только между собой, то можно записать соотношение, называемое также уравнением теплового баланса:

    `Q_(sf"пол") = Q_(sf"отд")` (1.4)

    В ряде тепловых процессов тепло может поглощаться или выделяться телом без изменения его температуры. Такие тепловые процессы имеют место при изменении агрегатного состояния вещества - плавлении, кристаллизации, испарении, конденсации и кипении. Коротко остановимся на основных характеристиках этих процессов.

    Плавление – процесс превращения кристаллического твёрдого тела в жидкость. Процесс плавления происходит при постоянной температуре, тепло при этом поглощается.

    Удельная теплота плавления `lambda` равна количеству теплоты, необходимому для того, чтобы расплавить `1` кг кристаллического вещества, взятого при температуре плавления. Количество теплоты `Q_(sf"пл")`, которое потребуется для перевода твёрдого тела массы  `m` при температуре плавления в жидкое состояние, равно

    `Q_(sf"пл") = lambda * m`. (1.5)

    Поскольку температура плавления остаётся постоянной, то количество теплоты, сообщаемое телу, идёт на увеличение потенциальной энергии взаимодействия молекул, при этом происходит разрушение кристаллической решётки.

    Процесс кристаллизации – это процесс, обратный процессу плавления. При кристаллизации жидкость превращается в твёрдое тело и выделяется количество теплоты, также определяемое формулой (1.5).

    Испарение – это процесс превращения жидкости в пар. Испарение происходит с открытой поверхности жидкости. В процессе испарения жидкость покидают самые быстрые молекулы, т. е. молекулы, способные преодолеть силы притяжения со стороны молекул жидкости. Вследствие этого, если жидкость теплоизолирована, то в процессе испарения она охлаждается.

    Удельная теплота парообразования `L` равна количеству теплоты, необходимому для того, чтобы превратить в пар `1` кг жидкости. Количество теплоты `Q_(sf"исп")`, которое потребуется для перевода в парообразное состояние жидкость массой `m` равно

    `Q_(sf"исп") =L*m`. (1.6)

    Конденсация – процесс, обратный процессу испарения. При конденсации пар переходит в жидкость. При этом выделяется тепло. Количество теплоты, выделяющейся при конденсации пара, определяется по формуле (1.6).

    Кипение – процесс, при котором давление насыщенных паров жидкости равно атмосферному давлению, поэтому испарение происходит не только с поверхности, но и по всему объёму (в жидкости всегда имеются пузырьки воздуха, при кипении давление паров в них достигает атмосферного, и пузырьки поднимаются вверх).

    Возгонка (сублимация) – процесс перехода вещества из твёрдого состояния непосредственно в газообразное. Именно благодаря сублимации мы чувствуем запахи некоторых твердых веществ, например, нафталина и камфары. По этой же причине мокрое белье, вывешенное на мороз, высыхает. Обратный процесс называется десублимацией. Примером десублимации служат «узоры» на окнах, образующиеся из водяного пара, находящегося в воздухе и кристаллизующегося на поверхности стекла.


  • 7. Примеры решения задач
    Задача 1

    В электрический чайник налили холодную воду при температуре  `t_1 = 10^@ "C"`. Через время `tau =10` мин после включения чайника вода закипела. Через какое время она полностью испарится? Потерями теплоты пренебречь. Удельная теплоёмкость воды `c_(sf"в") = 4200  sf"Дж"//(sf"кг" * sf"К")`, удельная теплота парообразования воды `L_(sf"в") =2,26 *10^6  sf"Дж"//sf"кг"`.

    Решение

    Для испарения воды массой `m` при температуре кипения необходимо количество теплоты `Q_1 =mL_(sf"в")`, где `L_(sf"в")` - удельная теплота парообразования воды.

    Пусть воде от нагревателя чайника в единицу времени поступает количество теплоты `q`, а `tau_1` - время, необходимое для испарения всей воды, нагретой до температуры кипения. Тогда справедливо соотношение

    `Q_1 = mL_(sf"в") =q tau_1`.

    Количество теплоты `Q_2`, поступившее от нагревателя за время `tau` и нагревшее воду от начальной температуры  `t_1 = 10^@ "C"` до температуры кипения `t_2 =100^@ "C"`, равно

    `Q_2 = q tau = c_(sf"в")m (t_2 - t_1)`,

    где `c_(sf"в")` - удельная теплоёмкость воды. Отсюда для массы воды получаем

    `m= (q tau)/(c_(sf"в") (t_2 - t_1))`.

    Подставляя это выражение в соотношение для `Q_1`, имеем

    `q*tau_1 = (L_(sf"в")q tau)/(c_(sf"в") (t_2 - t_1))`.

    Отсюда для времени испарения воды получаем

    $$ {\tau }_{1}={\displaystyle \frac{{L}_{\mathrm{в}}·\tau }{{c}_{\mathrm{в}}·\left({t}_{2}-{t}_{1}\right)}}={\displaystyle \frac{\mathrm{2,26}·{10}^{6} \mathrm{Дж}/\mathrm{кг}·600 \mathrm{с} }{\mathrm{4,2}·{10}^{3} \mathrm{Дж}/(\mathrm{кг}·\mathrm{К})·90 \mathrm{К}}}\approx 1 \mathrm{час}.$$

    Задача 2

    Найдите расход бензина автомобиля (в литрах) на `L = 100` км пути при скорости `v=90` км/ч. Мощность двигателя автомобиля `P=30` кВт, коэффициент полезного действия `eta =25%`.

    Решение

    Количество теплоты `Q`, которое выделяется при сгорании бензина объёмом `V`, зависит от удельной теплоты сгорания `q` данного вида топлива (для бензина `q=46 sf"МДж"//sf"кг"`)  и массы `m` сгоревшего топлива. С учётом того, что `m=rho V` (для бензина `rho = 700  sf"кг"//sf"м"^3`), получаем

    `Q=qm=q rho V`.

    Часть энергии, выделяемой при сгорании бензина, используется для создания полезной мощности `P`. Если двигатель, развивая постоянную мощность `P`, проработал в течение времени `tau`, то совершённая им работа `A` равна `P tau`. Эффективность преобразования теплоты `Q` сгорания топлива в механическую работу `A` двигателя характеризуется коэффициентом полезного действия (КПД) двигателя `eta`

    `eta=A/Q * 100% = (P tau)/Q *100% = (P tau)/(q rho V) * 100%`.

    Время работы двигателя `tau = L//v`. Из полученных соотношений для величины расхода бензина находим

    `V = (100%)/(eta) * (P*L)/(q*rho *v) ~~(100%)/(25%) * (30*10^3  sf"Дж"//sf"c" * 10^5 sf"м")/(46 * 10^6 sf"Дж"//sf"кг" * 700 sf"кг"//sf"м"^3 * 25 sf"м"//sf"с") ~~14,9 sf"л"`.

    Следовательно, расход бензина для автомобиля с указанными характеристиками составляет примерно `15` литров на `100` км пути.

    Задача 3

    При выстреле из ружья стальная дробь массой `m=45` г вылетает со скоростью `v=600` м/с. Считая, что `80%` энергии, высвободившейся при сгорании порохового заряда массой `M=9` г, переходит в кинетическую энергию пули и её внутреннюю энергию, определите, на сколько градусов повысилась температура пули. Удельная теплота сгорания пороха `q=3 sf"МДж"//sf"кг"`, удельная теплоёмкость стали `c_(sf"ст") = 500 sf"Дж" //(sf"кг" * sf"К")`.

    Решение

    При сгорании пороха массой `M` выделяется энергия (теплота) `Q=qM`, где `q` -удельная теплота сгорания пороха. По условию задачи `80%` этой энергии переходит в кинетическую энергию `K` дроби и её внутреннюю энергию. Следовательно, внутренняя энергия дроби изменяется, и пусть `Delta U` - величина этого изменения. Тогда справедливо следующее соотношение

    `0,8 Q=K+Delta U`.

    Перепишем его, учитывая выражения для кинетической энергии дроби `K=mv^2 //2` и изменения внутренней энергии `Delta U = c_(sf"ст") mDelta t`, где `Delta t` - изменение температуры дроби (искомая величина). Получаем

    `0,8 qM=(mv^2)/(2) +c_sf"ст" mDelta t`.

    Отсюда для изменения температуры находим

    `Delta t= (1,6 qM - mv^2)/(2 c_(sf"ст") m) = 600 sf"К"`.

    Задача 4

    Как велика масса стальной детали, нагретой предварительно до `500^@ "C"`, если при опускании её в калориметр, содержащий `18,6` л воды при температуре `13^@ "C"`, последняя нагрелась до `35^@ "C"`. Теплоёмкостью калориметра и потерями теплоты на испарение воды пренебречь. Удельная теплоёмкость стали `c_(sf"ст") = 500 sf"Дж"//(sf"кг" * sf"К")`.

    Решение

    Во время рассматриваемого теплового процесса стальная деталь массой `M_(sf"ст")` охлаждается от температуры `t_1 =500^@ "C"` до температуры `t=35^@ "C"`, отдавая при этом количество теплоты `Q_(sf"ст")`:

    `Q_(sf"ст") = c_(sf"ст") M_(sf"ст") (t_1 -t)`.

    За это же время вода массой `M_sf"в" =18,6` кг нагревается от температуры `t_2 =13^@ "C"` до температуры `t=35^@ "C"`, получив при этом количество теплоты `Q_(sf"в")`:

    `Q_sf"в" = c_sf"в" M_sf"в" (t-t_2)`.

    Уравнение теплового баланса для данного теплового процесса можно записать следующим образом:

    $$ {Q}_{\mathrm{отд}}={Q}_{\mathrm{ст}}={c}_{\mathrm{ст}}{M}_{\mathrm{ст}}\left({t}_{1}-t\right)={Q}_{\mathrm{пол}}={Q}_{\mathrm{в}}={c}_{\mathrm{в}}{M}_{\mathrm{в}}\left(t-{t}_{2}\right)$$.

    Здесь учтено, что по условию задачи испарением воды можно пренебречь, т. е. теплота, выделяемая при охлаждении стальной детали, идёт только на нагревание воды.

    Из последнего соотношения для массы стальной детали получаем

    $$ {M}_{\mathrm{ст}}={\displaystyle \frac{{с}_{\mathrm{в}}{M}_{\mathrm{в}}\left(t-{t}_{2}\right)}{{c}_{\mathrm{ст}}\left({t}_{1}-t\right)}}={\displaystyle \frac{4200 \mathrm{Дж}/(\mathrm{кг}·\mathrm{К})·\mathrm{18,6} \mathrm{кг}·\left(35°\mathrm{C}-13°\mathrm{C}\right)}{500 \mathrm{Дж}/(\mathrm{кг}·\mathrm{К})·\left(500°\mathrm{C}-35°\mathrm{C}\right)}}\approx \mathrm{7,4} \mathrm{кг}$$.

    Задача 5

    В калориметр, где в состоянии теплового равновесия находился мокрый снег (смесь льда и воды) массой `m=250` г, долили `M=1` кг воды при температуре `t_1 =20^@ "C"`. После того, как снег растаял, и установилось тепловое равновесие, в калориметре оказалась вода при температуре `t_2 =5^@ "C"`. Сколько воды содержалось в снегу? Потерями теплоты и теплоёмкостью калориметра пренебречь.

    Решение

    Конечное агрегатное состояние системы по условию задачи - вода. Мокрый снег (смесь льда и воды при температуре `t_0 =0^@ "C"`) получает теплоту от находящейся в калориметре воды.

    Часть теплоты, подведённой мокрому снегу, идёт на плавление находящегося в снегу льда (пусть масса льда `m_(sf"л")`). Для плавления льда при температуре плавления необходимо количество теплоты `Q_sf"пол,1"`:

    `Q_(sf"пол,1") = m_sf"л" lambda_sf"л"`.

    На нагревание получившейся из мокрого снега воды массой `m=250` г от температуры `t_0 = 0^@ "C"` до температуры `t_2 = 5^@ "C"` требуется количество теплоты `Q_sf"пол,2"`

    `Q_sf"пол,2" = c_sf"в" m (t_2 - t_0)`.

    Таким образом, суммарное количество теплоты `Q_sf"пол"`, получаемое мокрым снегом, а затем водой, равно

    `Q_sf"пол"=Q_sf"пол,1" + Q_sf"пол,2"=m_(sf"л") lambda_(sf"л") + c_(sf"в") m (t_2 - t_0)`.

    Вода, первоначально находившаяся в калориметре, охлаждается от температуры `t_1 = 20^@ "C"` до температуры `t_2 =5^@ "C"`, отдавая при этом количество теплоты `Q_sf"отд"`

    `Q_sf"отд" = с_sf"в" M (t_1 - t_2)`.

    Уравнение теплового баланса для данного теплового процесса можно записать следующим образом:

    `Q_sf"отд" = с_sf"в" M (t_1 - t_2)=Q_sf"пол" = m_sf"л" lambda_sf"л" + c_sf"в" m (t_2 - t_0)`.

    Отсюда для массы  льда, находившегося в мокром снегу, получаем

    `m_sf"л" = (Mc_sf"в" (t_1 - t_2) - mc_sf"в" (t_2 - t_0))/(lambda_sf"л") ~~170 sf"г"`.

    Масса же воды, содержавшейся в мокром снегу, равна `78` г.

    Пример 6

    В холодную воду, взятую в количестве `12` кг, впускают `1` кг водяного пара при температуре `t_sf"п" = 100^@ "C"`. Температура воды после конденсации в ней пара поднялась до `t=70^@ "C"`. Какова была первоначальная температура воды? Потерями теплоты пренебречь.

    Решение

    Попав в холодную воду, пар массой `m_sf"п" = 1` кг конденсируется, выделяя количество теплоты `Q_1 = m_sf"п"L_sf"в"`. Здесь `L_sf"в"` - удельная теплота конденсации водяного пара. Получившаяся при конденсации пара вода охлаждается от температуры  `t_sf"п" =100^@ "C"` до `t=70^@ "C"`, отдавая холодной воде количество теплоты `Q_2 = c_sf"в" * m_sf"п" * (t_sf"п" - t)`.

    Для нагревания холодной воды массы `m_sf"в" =12` кг от начальной температуры `t_sf"в"` до температуры `t=70^@ "C"` требуется количество теплоты `Q_3 = c_sf"в" * m_sf"в" * (t-t_sf"в")`.

    Составим уравнение теплового баланса для рассматриваемого теплового процесса:

    `Q_sf"отд" = Q_1 + Q_2 = L_sf"в" m_sf"п" + c_sf"в" m_sf"п" (t_sf"п" - t) = Q_sf"пол" = Q_3 = c_sf"в" m_sf"в" (t-t_sf"в")`.

    Решая полученное уравнение, для начальной температуры воды находим:

    `t_sf"в" = t- (L_sf"в" m_sf"п") / (c_sf"в" m_sf"в")  -   (m_sf"п")/(m_sf"в") * (t_sf"п" - t) = 23^@ "C"`.

    Задача 7*

    В калориметр, содержащий `200` г воды при температуре `8^@"C"`, опускают `100` г льда, температура которого равна `-20^@"C"`. Какая температура установится в калориметре? Каково будет содержимое калориметра после установления теплового равновесия? Теплоёмкостью калориметра пренебречь.

    Решение

    Конечное состояние не очевидно. Требуется анализ.

    Чтобы нагреть массу `m_"л"=0,1` кг льда от `t_"л"=-20^@"C"` до `t_0=0^@"C"`, надо было бы затратить количество теплоты

    `Q_1=c_"л"m_"л"(t_0-t_"л")=4200` Дж.

    Чтобы расплавить весь лёд при `0^@"C"` потребовалось бы количество теплоты

    `Q_2=lambda_"л"m_"л"=33600` Дж.

    Если вся вода охладится от `t_"в"=8^@"C"` до `t_0=0^@"C"`, то выделится количество теплоты

    `Q_3=c_"в"m_"в"(t_"в"-t_0)=6720` Дж.

    Сравнивая полученные значения для `Q_1`, `Q_2`, `Q_3`, приходим к выводу, что `Q_3` хватит на нагрев всего льда от `t_"л"` до `t_0` и плавления только части льда массой `m_1`. Уравнение теплового баланса

    `Q_3=Q_1+m_1lambda_"л"`.

    Отсюда

    `m_1=(Q_3-Q_1)/(lambda_"л")=7,5` г.

    Итак, в калориметре будет смесь из `207,5` г воды и `92,5` г льда при `0^@"C"`.




  • 6. Удельная теплота сгорания топлива

    Увеличить внутреннюю энергию тела можно двумя способами: 1) за счёт совершения над ним работы внешними силами, 2) за счёт теплообмена с телом, имеющим более высокую температуру, чем само тело. В некоторых случаях, например, для плавления металлов, необходимо очень большое количество теплоты и высокая температура. Таких условий можно достичь, используя какое-либо топливо (уголь, нефть, природный газ, дерево и т. д.). При его сгорании, т. е. при химической реакции соединения с кислородом, будет выделяться теплота. Это связано с тем, что в процессе химической реакции горения кинетическая энергия получаемых частиц вещества (продуктов сгорания) становится больше, чем кинетическая энергия исходных частиц вещества.

    Энергия, выделяющаяся при сгорании топлива, называется теплотой сгорания. Удельная теплота сгорания топлива – это количество теплоты, которое выделяется при полном сгорании `1` кг топлива. Она обозначается буквой `q`. Количество теплоты, выделившееся при сгорании массы m топлива, равно

    `Q=q*m`.                                                                                   (7)

                                                

  • 8. О точности при получении численного ответа

    Математика имеет дело с абстрактными (идеализированными) объектами. Например, идеально ровные прямые, не имеющие размеров точки, и числа, которые абсолютно точны. В отличие от математики, физика имеет дело с реальными природными объектами, которые измеряются реальными приборами. Все приборы измеряют физические величины с некоторой точностью, которая определяется классом точности прибора или ценой деления его шкалы. Например, у линейки цена деления `1` мм и, соответственно, погрешность, равная половине цены деления прибора, составляет `0,5` мм. Более того, точность измерений зависит от способа измерения, от выбора методики и условий проведения эксперимента, и многих других причин, которые определяют объективную погрешность эксперимента.

    Поэтому, если Вы, измеряя с помощью обычной линейки (цена деления `1` мм), вдруг получили ответ с точностью до тысячных (или даже точнее) долей миллиметра, то Вы наврали. Так как, сами понимаете, что таким прибором заведомо нельзя так точно измерить. Или другой пример. Если Вы пишите ответ `«sqrt2»`, то Вы, как минимум, претендуете на Нобелевскую премию. Потому что, так Вы делаете заявку на измерение с бесконечной точностью, что в принципе невозможно. (Противоречит соотношению неопределённостей Гейзенберга.) Таким образом, при написании ответа или результата эксперимента Вы отвечаете за каждую свою цифру.

    Возникает вопрос, так всё же с какой точностью нужно писать ответ к задаче? В эксперименте, по умолчанию (если не оговаривается особо), обычно подразумевают точность `10%`. Так называемая «золотая десятина». При решении задач, основным соображением является то, что количество значащих цифр в ответе не должно превышать количество значащих цифр в условии.

    Здесь изложены лишь некоторые соображения, которые определяют точность решения. В целом же, точность эксперимента или расчёта экспериментатор (автор идеи) определяет сам, исходя из здравого смысла и своего опыта. Со временем, Уважаемые Читатели, этот опыт придёт и к Вам.

    Пример

    В эксперименте измерение трёх рёбер прямоугольного параллелепипеда дало значения `a=0,12` м, `b=1,2*10^(-2)` м, `c=121` мм. Требуется вычислить его объём, ответ дать в кубических миллиметрах.

    Решение

    Поскольку нам необходимо вычислить объём в миллиметрах, приведём все результаты измерений в миллиметрах:

    `a=0,12  "м"=0,12*10^3  "мм"=12*10  "мм"`

    `b=1,2*10^(-2)  "м"=1,2*10^(-2)*10^3  "мм"=12  "мм"`

    `c=121  "мм"`.

    Объём равен произведению сторон

    `V=a*b*c=12*10  "мм"*12  "мм"*121  "мм"=174240  "мм"^3~~1,7*10^5  "мм"^3`.

    Исходные данные содержали минимум `2` значащие цифры, поэтому необходимо и ответ округлить до двух значащих цифр.

    ответ

    Объём параллелепипеда `V=1,7*10^5  "мм"^3`.


  • Введение

    Слово «электричество» может вызвать представление о сложной современной технике: компьютерах, телевизорах, электродвигателях и т. д. Но электричество играет в нашей жизни гораздо более серьёзную роль. Действительно, согласно современной теории строения вещества, силы, действующие между атомами и молекулами, в результате чего образуются жидкие и твёрдые тела, – это электрические силы. Они ответственны и за обмен веществ, происходящий в человеческом организме. Даже когда мы что-нибудь тянем или толкаем, это оказывается результатом действия электрических сил между молекулами руки и того предмета, на который мы воздействуем. И вообще, большинство сил (например, силы упругости, силы реакции опоры) сегодня принято считать электрическими силами, действующими между атомами. Сила тяжести, однако, не относится к электрическим силам.

    Электрические явления известны с древних времён, но лишь в последние два столетия они были досконально изучены. По современным представлениям вся совокупность электрических и магнитных явлений есть проявление существования, движения и взаимодействия электрических зарядов. В настоящем Задании мы познакомимся с основными понятиями, определениями и законами, утвердившимися при описании электрических явлений.

  • 1.2. Объяснение явления электризации

    По современным представлениям атом состоит из массивного положительно заряженного ядра, состоящего из протонов и нейтронов, и движущихся вокруг ядра отрицательно заряженных электронов. В нормальном состоянии положительный заряд ядра (его носителями являются находящиеся в ядре протоны) равен по величине (т. е. по модулю) отрицательному заряду электронов, и атом в целом электрически нейтрален. Однако атом может терять или приобретать один или несколько электронов. Тогда его заряд будет положительным или отрицательным, и такой атом называется ионом.

    В твёрдом теле ядра атомов могут колебаться, оставаясь вблизи фиксированных положений, в то время как часть электронов движется свободно. Электризацию трением можно объяснить тем, что в различных веществах ядра удерживают электроны с различной силой. Когда пластмассовая линейка, которую натирают бумажной салфеткой, приобретает отрицательный заряд, это означает, что электроны в бумажной салфетке удерживаются слабее, чем в пластмассе, и часть их переходит с салфетки на линейку. Положительный заряд салфетки равен по величине отрицательному заряду, приобретённому линейкой. Таким образом,  при электризации тел заряды не создаются, а перераспределяются. Этим и объясняется явление электризации: электроны удаляются из тела или заимствуются у атомов другого тела, но не уничтожаются и не создаются вновь. Следует заметить, что при описанном способе электризации трение не играет принципиальной роли: сдавливая тела,  мы просто сближаем их поверхности, которые без этого соприкасались бы в немногих точках вследствие неровностей и выступов.

    Наэлектризовать тело можно и другими способами. Например, приведя незаряженное тело в соприкосновение с заряженным. Возможна электризация через влияние, т. е. без непосредственного контакта. Опыт показывает, что под действием заряженного тела на незаряженном может происходить перераспределение электронов или упорядочение молекул (или атомов), вследствие чего части незаряженного тела оказываются наэлектризованными. Это явление получило название электризации через влияние, или электростатической индукции, а заряды, возникающие вследствие перераспределения (упорядочения), индуцированными.

    Электризация у некоторых веществ может происходить под действием электромагнитных волн: электроны покидают облучаемую поверхность, в результате тело заряжается положительно. Это явление называется фотоэлектрическим эффектом, или кратко фотоэффектом.

    Пример 2

    В результате действия ультрафиолетового электромагнитного излучения на первоначально незаряженное тело его поверхность покинуло `N=4,0*10^(10)` электронов. Найдите заряд `Q` тела? Элементарный заряд `e=1,6*10^(-19)`Кл.

    Решение

    Положительный заряд тела будет обусловлен некомпенсированным электронами зарядом `Q=N*e=4,0*10^(10)*1,6*10^(-19)=6,4*10^(-9)`Кл.


  • 1.1. Статическое электричество. Электрический заряд и его свойства

    Слово электричество происходит от  греческого названия янтаря – ελεκτρον. Янтарь – это окаменевшая смола хвойных деревьев; древние заметили, что если натереть янтарь куском шерстяной ткани, то он будет притягивать  лёгкие  предметы  и  пыль. В конце  XVI  века  английский  учёный У. Гильберт обнаружил, что таким же свойством обладают стекло и ряд других веществ, натёртых шёлком. Теперь мы говорим, что в этих случаях тела, благодаря трению, приобретают электрический заряд, а сами тела называем заряженными.

    Все ли электрические заряды одинаковы или существуют различные их виды? Опыт показывает, что существует два и только два вида зарядов, причём заряды одного вида отталкиваются, а заряды разных видов притягиваются. Мы говорим, что одноимённые заряды отталкиваются, а разноимённые притягиваются.

    Американский учёный Б. Франклин (XVIII век) назвал эти два вида зарядов положительными и отрицательными. Какой заряд как назвать было совершенно безразлично; Франклин предложил считать заряд наэлектризованной стеклянной палочки положительным. В таком случае заряд, появляющийся на янтаре, потёртом о шерсть, будет отрицательным. Этого соглашения придерживаются и по сей день.

    О заряженных телах говорят, что одни тела наэлектризованы сильнее, а другие слабее. Для того чтобы такие утверждения имели смысл, следует установить количественную меру, позволяющую сравнивать степени наэлектризованности тел. Мерой наэлектризованности любого тела является электрический заряд  `Q` этого тела (латинские буквы `q` и `Q` традиционно используются для обозначения заряда). В свою очередь, незаряженные тела называют электронейтральными, или просто нейтральными, их заряд равен нулю.

    В международной системе единиц (сокращенно СИ) единицей измерения заряда служит кулон (Кл) (в честь французского учёного Шарля Кулона, установившего в 1785 г. закон взаимодействия точечных зарядов). Определение этой единицы в СИ даётся через единицу измерения силы тока и будет представлено ниже.

    Развитие науки о природе привело не только к открытию элементарных частиц (протонов, электронов, нейтронов и др.), но и показало, что электрический заряд не может существовать сам по себе, без элементарной частицы – носителя заряда.

    Важными свойствами заряда являются его делимость и независимость от скорости.

    Экспериментально установлена делимость электрического заряда и существование его наименьшей порции. Эту наименьшую величину электрического заряда называют элементарным зарядом `e=1,6*10^(-19)`Кл. Несмотря на значительные экспериментальные усилия, к настоящему времени не обнаружены в свободном состоянии носители с зарядом `|q|<e`, где `e` - элементарный заряд.

    Носителями электрического заряда являются элементарные частицы, например, электроны (заряд каждого `q_e=-e=-1,6*10^(-19)`Кл), протоны (заряд каждого `q_p=e=1,6*10^(-19)`Кл). Экспериментально установлено, что отрицательный заряд электрона равен (с высокой точностью) по абсолютному значению положительному заряду протона. Величина заряда любого тела кратна элементарному заряду.

    Пример 1

    Металлическому шару путём удаления части электронов сообщается заряд `Q=2,0*10^(-6)` Кл. Сколько электронов удалено с шара? На сколько изменится масса шара? Элементарный заряд `e=1,6*10^(-19)`Кл, масса электрона  `m_e=0,9*10^(-30)`кг.

    Решение

    Количество удалённых электронов найдём из равенства

    `N=(-Q)/(-e)=(2,0*10^(-6))/(1,6*10^(-19))=1,25*10^(13)`.

    Масса электронов, удалённых с шара,

    `m=N*m_e=1,25*10^(13)*0,9*10^(-30)=1,125*10^(-17)`кг

    даёт ответ на второй вопрос задачи. Отметим, что убыль массы шара очень мала.

    Независимость элементарного заряда от скорости носителя доказывается фактом электронейтральности атомов, в которых вследствие различия масс электрона и протона лёгкие электроны, видимо, движутся значительно быстрее массивных протонов. Если бы заряд зависел от скорости, нейтральность атомов не могла бы соблюдаться. Так что независимость заряда от скорости принимается в качестве одного из экспериментальных фактов,  на которых строится теория электричества.

    Лишь в XIX веке стало ясно: причина существования электрического заряда кроется в самих атомах. Позднее (в другом Задании) мы обсудим строение атома и развитие представлений о нём более подробно; здесь же кратко остановимся на основных идеях, которые помогут нам лучше понять природу электричества.


  • 1.3. Проводники и изоляторы

    По поведению зарядов в наэлектризованном теле все вещества делятся на проводники и изоляторы (диэлектрики). В диэлектриках сообщённый им заряд остаётся в том месте, куда он был помещён при электризации. В проводниках сообщённый заряд может свободно перемещаться по всему телу. Именно поэтому проводящие тела можно заряжать электризацией через влияние. Почти все природные материалы попадают в одну из этих двух резко различных категорий. Есть, однако, вещества (среди которых следует назвать кремний, германий, углерод), принадлежащие к промежуточной, но тоже резко обособленной категории. Их называют полупроводниками.

    С точки зрения атомной теории электроны в изоляторах связаны с атомами очень прочно, в то время как в проводниках многие электроны связаны с атомами очень слабо и могут свободно перемещаться внутри вещества. Такие электроны называют «свободными», или электронами проводимости. Слово «свободными» взято в кавычки, так как свойства электронов в металле значительно отличаются от свойств действительно свободных электронов в вакууме. В металлических телах – проводниках электричества – число свободных электронов огромно. Проиллюстрируем это утверждение на следующем примере.

    Пример 3

    Оцените число `n` свободных электронов в `V=1"м"^3` меди, считая, что в меди в среднем в расчёте на один атом свободным является один электрон. Плотность меди `rho=8,9*10^3 "кг"//"м"^3`, в `M=64` г меди содержится  `N_A=6,02*10^(23)` атомов.

    Решение

    Согласно условию число свободных электронов в любом объёме меди равно числу атомов в нём. Поэтому определим число атомов в объёме `V`.  Для этого следует массу меди `rhoV` разделить на `M` и умножить на `N_A`, т. е.

    `N=(rhoV)/M N_A=(8,9*10^3*1)/(64*10^(-3))*6,02*10^(23)~~8,4*10^(28)`.

    Найденная величина называется концентрацией носителей.


  • 1.4. Закон сохранения электрического заряда

    Сохранение электрического заряда представляет собой важнейшее известное из опыта его свойство: в изолированной системе алгебраическая сумма зарядов всех тел остаётся неизменной. Справедливость этого закона подтверждается не только в процессах электризации, но и в наблюдениях над огромным числом рождений, уничтожений и взаимных превращений элементарных частиц. Закон сохранения электрического  заряда – один  из  самых фундаментальных  законов  природы. Неизвестно ни одного случая его нарушения. Даже в тех случаях, когда происходит рождение новой заряженной частицы, обязательно одновременно рождается другая частица с равным по величине и противоположным по знаку зарядом.

    Электрический заряд элементарной частицы не зависит ни от выбора системы отсчёта, ни от состояния движения частицы, ни от её взаимодействия с другими частицами. Поэтому и заряд макроскопического тела не зависит ни от движения составляющих его частиц, ни от движения тела как целого.

    Пример 4

    Два одинаковых проводящих шарика, несущих заряды `Q_1=-9,0*10^(-9)` Кл и `Q_2=2,0*10^(-9)` Кл, приводят в соприкосновение и удаляют друг от друга. Какими станут заряды `Q_1^'` и `Q_2^'` шариков?

    Решение

    После приведения шариков в соприкосновение заряды, свободно перемещающиеся в проводниках, придут в движение и разделятся поровну между шариками. Действительно у зарядов «нет оснований предпочесть» один из шариков: «с точки зрения зарядов» шарики неотличимы. Тогда `Q_1^'=Q_2^'`. Заряды шариков найдём по закону сохранения электрического заряда:

    `Q_1+Q_2=2Q_1^'`.

    Отсюда `Q_1^'=(Q_1+Q_2)/2=(-9,0*10^(-9)+2,0*10^(-9))/2=-3,5*10^(-9)` Кл.

    Соображения симметрии, использованные при решении задачи, являются важнейшими в физике, к ним мы будем неоднократно обращаться в дальнейшем в различных разделах курса физики.

    Пример 5

    Свободный нейтрон `n` - незаряженная частица – распадается на протон `p`, электрон  `e^-` и электронное антинейтрино $$ {\stackrel{~}{\nu }}_{e}$$. Схему этой реакции записывают в виде $$ n\to p+{e}^{-}+{\stackrel{~}{\nu }}_{e}$$. Найдите заряд `q` антинейтрино.

    Решение

    По условию нейтрон – незаряженная частица. Заряды протона и электрона равны соответственно `e` и `-e`. Из закона сохранения заряда следует, что заряд нейтрона равен сумме зарядов продуктов реакции, т. е. протона, электрона и антинейтрино:

    `0=e+(-e)+q`.

    Отсюда `q=0`.

    Заряд электронного антинейтрино равен нулю.