16 статей
Рис. 15.1 |
Под замкнутой цепью понимается схема, в которой участок цепи с ЭДС и сопротивлением подсоединён к участку цепи с сопротивлением и без ЭДС (рис. 15.1). Участок называется источником тока или просто источником. Сопротивление участка называется внутренним сопротивлением источника и на схемах обозначение в виде прямоугольника опускается, указывается только сама буква . Участок замкнутой цепи называют внутренним, участок – внешним, а сопротивление – внешним сопротивлением. Под действием сторонних сил в источнике в замкнутой цепи возникает ток , идущий вне источника от `«+»` к `«-»`. Применим закон Ома для участков и :
Сложив последние два уравнения, получим:
. | (15.1) |
называется внутренним падением напряжения, – внешним падением напряжения. Обычно закон Ома для замкнутой цепи записывают в одной из двух форм, которые получаются из (15.1):
.
называется полным сопротивлением цепи.
При последовательном соединении проводников с сопротивлениями $$ {R}_{1}, {R}_{2}, {R}_{3}, ...$$ ток $$ I $$равен току в каждом:
$$ I={I}_{1}={I}_{2}={I}_{3}=...$$
На рис. 16.1 показано последовательное соединение двух проводников. Общая разность потенциалов (напряжение) всего участка цепи, как легко показать, равна сумме напряжений на отдельных проводниках:
![]() |
Рис. 16.1 |
$$ U={U}_{1}+{U}_{2}+{U}_{3}+...$$
Можно вывести, что общее сопротивление при последовательном соединении проводников:
$$ R={R}_{1}+{R}_{2}+{R}_{3}+...$$
В частном случае последовательного соединения $$ n$$ проводников сопротивлением $$ {R}_{1}$$ каждый $$ R=n{R}_{1}$$.
$$ I={I}_{1}+{I}_{2}+{I}_{3}+...$$. При параллельном соединении проводников ток `I` равен сумме токов во всех проводниках:
На рис. 16.2 показано параллельное соединение двух проводников. Общее напряжение равно напряжению на каждом проводнике:
![]() |
Рис. 16.2 |
$$ U={U}_{1}={U}_{2}={U}_{3}=...$$
Можно показать, что общее сопротивление $$ R$$ при параллельном соединении проводников с сопротивлениями $$ {R}_{1}, {R}_{2}, ...$$ находится из равенства
$$ {\displaystyle \frac{1}{R}}={\displaystyle \frac{1}{{R}_{1}}}+{\displaystyle \frac{1}{{R}_{2}}}+...$$
В частном случае параллельного соединения двух проводников $$ R={\displaystyle \frac{{R}_{1}{R}_{2}}{{R}_{1}+{R}_{2}}}$$.
В другом частном случае параллельного соединения $$ n$$ проводников сопротивлением $$ {R}_{1}$$ каждый $$ R={R}_{1}/n$$.
В схеме на рис. 16.3 $$ {R}_{1}=1$$ Ом, $$ {R}_{2}=2$$ Ом, $$ {R}_{3}=6$$ Ом, $$ {R}_{4}=9$$ Ом, $$ {R}_{5}=5$$ Ом, $$ \mathcal{E}=12$$ В. $$ r=\mathrm{0,5}$$ Ом. Найти ток через резистор $$ {R}_{1}$$.
![]() |
Рис. 16.3 |
Задачи с громоздкими схемами удобно рассчитывать не в общем виде, а численно, т. е. последовательно находить численные значения параметров схемы. Расставим точки `A`, `B`, `D`, `M`, `N`, `P`, `Q` на схеме.
Сопротивление участка `PQ` `R_(PQ)=R_1+R_2=3` Ом.
Сопротивление участка `AB` $$ {R}_{AB}={\displaystyle \frac{{R}_{3}{R}_{PQ}}{{R}_{3}+{R}_{PQ}}}=2$$ Ом.
Сопротивление участков `DA`, `DB` и `MN` будут `R_(DA)=R_4//3=3` Oм, `R_(DB)=R_(DA)+R_(AB)=5` Ом, $$ {R}_{MN}={\displaystyle \frac{{R}_{DB}{R}_{5}}{{R}_{DB}+{R}_{5}}}=\mathrm{2,5}$$ Ом.
Заметим, что оказалось $$ {R}_{DB}={R}_{5}=5$$ Ом. Тогда можно было бы сразу написать $$ {R}_{MN}={\displaystyle \frac{{R}_{5}}{2}}=2,5$$ Ом.
По закону Ома для замкнутой цепи $$ I={\displaystyle \frac{\mathcal{E}}{{R}_{MN}+r}}=4$$ A.
Теперь пойдём «обратно», вычисляя параметры схемы и приближаясь к $$ {R}_{1}$$. Напряжение между точками $$ M$$ и `N` $$ {U}_{MN}=I{R}_{MN}=10$$ B.
Напряжение $$ {U}_{DB}={U}_{MN}=10$$ B.
Ток на участке `DB` `I_(DB)=U_(DB)//R_(DB)=2` A.
Напряжение $$ {U}_{AB}={I}_{DB}{R}_{AB}=4$$ B.
Так как $$ {U}_{AB}={U}_{PQ}$$, то ток через $$ {R}_{1}$$ составит:
$$ {I}_{1}={I}_{PQ}={\displaystyle \frac{{U}_{PQ}}{{R}_{PQ}}}={\displaystyle \frac{{U}_{AB}}{{R}_{PQ}}}={\displaystyle \frac{4}{3}}$$ A.
Пусть на участке `1-2` нет ЭДС (рис. 14.1). Тогда равенство (13.1) принимает вид
. | (14.1) |
![]() |
Рис. 14.1 |
Здесь правило знаков такое же, как в (13.1), т. е. берётся для удобства и знак `«+»` перед ставится при совпадении направлений тока с направлением `1-2`. Если обозначить , то получается привычная формула закона Ома для участка цепи без ЭДС:
или . | (14.2) |
Заметим, что для участка цепи без ЭДС напряжение равно падению напряжения .
При последовательном соединении источников общая ЭДС равна алгебраической сумме ЭДС отдельных источников, общее внутреннее сопротивление равно сумме внутренних сопротивлений отдельных источников. Для определения знака ЭДС каждого источника нужно выбрать положительное направление движения на участке с этим источником. ЭДС источника берётся со знаком `«+»`, если направление действия ЭДС совпадает с выбранным направлением. В противном случае ставится знак `«-»`.
При параллельном соединении источников с одинаковыми ЭДС и возможно различными внутренними сопротивлениями общая ЭДС (ЭДС батареи) равна ЭДС одного источника. Внутреннее сопротивление батареи рассчитывается как при параллельном соединении проводников с сопротивлениями, равными внутренним сопротивлениям источников.
При параллельном соединении источников с различными ЭДС выражение для ЭДС батареи усложняется и здесь не приводится.
В схеме на рис. 17.1 $$ {\mathcal{E}}_{1}=12$$ В, $$ {\mathcal{E}}_{2}=3$$ В, $$ {r}_{1}=1$$ Ом, $$ {r}_{2}=2$$ Ом, $$ R=6$$ Ом.
![]() |
Рис. 17.1 |
Найти напряжения на зажимах источников, т. е. разность потенциалов $$ {\varphi }_{A}-{\varphi }_{B}$$ и $$ {\varphi }_{B}-{\varphi }_{D}$$.
ЭДС батареи последовательно соединённых источников:
$$ \mathcal{E}={\mathcal{E}}_{1}-{\mathcal{E}}_{2}=9$$ B.
Причём, полярность батареи совпадает с полярностью источника $$ {\mathcal{E}}_{1}$$ т. к. $$ {\mathcal{E}}_{1}>{\mathcal{E}}_{2}$$.
Ток по закону Ома для замкнутой цепи $$ I=\mathcal{E}/(R+{r}_{1}+{r}_{2})=1$$ A. По закону Ома для участков цепи `AB` и `BD`:
$$ {\varphi }_{A}-{\varphi }_{B}+{\mathcal{E}}_{1}=I{r}_{1,}$$, $$ {\varphi }_{B}-{\varphi }_{D}-{\mathcal{E}}_{2}=I{r}_{2}$$.
Отсюда $$ {\varphi }_{A}-{\varphi }_{B}=I{r}_{1}-{\mathcal{E}}_{1}=-11$$ B, $$ {\varphi }_{B}-{\varphi }_{D}=I{r}_{2}+{\mathcal{E}}_{2}=5$$ B.
Найти ток через резистор с сопротивлением $$ R$$ в схеме на рис. 17.2.
![]() |
![]() |
Рис. 17.2 | Рис. 17.3 |
Между точками `A` и `B` имеем параллельное соединение источников. На рис. 17.3 показана эквивалентная схема, для которой $$ {\mathcal{E}}_{1}=\mathcal{E}$$, $$ {r}_{1}=r·2r/\left(r+2r\right)=2r/3$$. Общая ЭДС и внутреннее сопротивление последовательно соединённых источников с ЭДС $$ 3\mathcal{E}$$ и $$ {\mathcal{E}}_{1}$$:
$$ {\mathcal{E}}_{0}=3\mathcal{E}-{\mathcal{E}}_{1}=3\mathcal{E}-\mathcal{E}=2\mathcal{E}$$,
$$ {r}_{0}=3r+{r}_{1}=3r+2r/3=11r/3$$.
Ток $$ I={\displaystyle \frac{{\mathcal{E}}_{0}}{R+{r}_{0}}}={\displaystyle \frac{6\mathcal{E}}{3R+11r}}$$.
Соединения резисторов и источников в сложных цепях не всегда можно свести к совокупности последовательного и параллельного их соединений. Для расчётов сложных цепей удобно применять правила Кирхгофа.
Узлом электрической цепи будем называть точку, где сходятся не менее трёх проводников. Токи, подходящие к узлу, будем считать положительными, а выходящие из узла – отрицательными. Узел – это не обкладки конденсатора, где может происходить существенное накопление заряда. Отсюда следует первое правило Кирхгофа:
алгебраическая сумма токов в узле равна нулю.
Участок цепи между двумя узлами называется ветвью. Возьмём в сложной цепи произвольный замкнутый контур, состоящий из отдельных ветвей. Выберем направление обхода контура по часовой стрелке или против. ЭДС в каждой ветви контура будем считать положительной, если направление её действия совпадает с выбранным направлением обхода контура, а в противном случае – отрицательной. Падение напряжения (произведение тока на сопротивление) в любой ветви контура будем считать положительным, если направление тока в этой ветви совпадает с направлением обхода контура, в противном случае – отрицательным. Записав для каждой ветви контура уравнение закона Ома для участка цепи, содержащего ЭДС, и сложив все уравнения, получим второе правило Кирхгофа:
в произвольном замкнутом контуре любой электрической цепи сумма падений напряжений во всех ветвях контура равна алгебраической сумме ЭДС во всех ветвях контура.
Оба правила Кирхгофа справедливы не только для постоянных во времени значений всех величин, входящих в соответствующие уравнения, но и для их мгновенных значений.
При составлении уравнений по правилам Кирхгофа нужно придерживаться следующих рекомендаций. Если в цепи содержится узлов, то по первому правилу Кирхгофа можно составить только независимых уравнений. При составлении уравнений по второму правилу Кирхгофа надо следить, чтобы в каждом новом контуре была хотя бы одна ранее не использованная ветвь. Отступление от этих рекомендаций приводит к появлению уравнений, являющихся следствием системы ранее составленных уравнений. В процессе решения такой «переполненной» системы может возникнуть тождество , что приводит в замешательство решающего из-за «исчезновения» неизвестных системы.
![]() |
Рис. 18.1 |
В схеме на рис. 18.1 B, B, Ом, Ом. Найти силу и направление тока во всех участках цепи. Считать, что внутренние сопротивления источников вошли в , и .
Зададим направления токов произвольно, например так, как показано на рис. 18.1.
Для нахождения трёх неизвестных токов надо составить три независимых уравнения. В схеме узла. По первому правилу Кирхгофа составляем уравнение. Для узла `C`:
.
Недостающие два уравнения составляем по второму правилу Кирхгофа для контуров `ABCA` и `ABCDA`:
, .
Решение системы полученных трёх уравнений в общем виде трудоёмко и даёт громоздкие выражения для токов. Систему удобно решать, подставив в неё значения ЭДС и сопротивлений:
, , .
Решая систему последний трёх уравнений, находим:
A, A, A.
Отрицательные значения токов и говорят о том, что истинные направления этих токов противоположны указанным на рис. 18.1.
Для любого участка цепи, даже содержащего ЭДС, справедлив закон Джоуля – Ленца:
количество теплоты, выделяемое на участке цепи с сопротивлением $$ R$$ при прохождении постоянного тока $$ I$$ в течение времени $$ t$$, есть $$ W={I}^{2}Rt$$.
Отсюда мощность выделяемого тепла `P=W//t=I^2R`.
Пусть на участке `1-2` идёт постоянный ток $$ I$$, перенося за время $$ t$$ от т. `1` к т. `2` заряд $$ q=It$$.
Работой тока на участке `1-2` называется работа сил электростатического поля по перемещению $$ q$$ из т. `1` в т. `2:` $$ {A}_{\mathrm{Т}}=q({\varphi }_{1}-{\varphi }_{2})$$.
Обозначим разность потенциалов (напряжение) $$ {\varphi }_{1}-{\varphi }_{2}=U$$. Тогда $$ {A}_{T}=qU=UIt$$. В зависимости от знака $$ U$$ получается и знак $$ {A}_{\mathrm{T}}$$.
Мощность тока:
$$ {P}_{\mathrm{T}}={A}_{\mathrm{T}}/t=UI$$.
Работой источника с ЭДС $$ \mathcal{E}$$ при прохождении через него заряда $$ q$$ называется работа сторонних сил над зарядом `q:`
.
Если заряд переносится постоянным током $$ I$$, то $$ {A}_{\mathrm{ист}}=\pm \mathcal{E}It$$.
Когда заряд (ток) через источник идёт в направлении действия сторонних сил, то работа источника положительна (он отдаёт энергию). Аккумулятор в таком режиме разряжается. При обратном направлении тока работа источника отрицательна (он поглощает энергию). В этом режиме аккумулятор заряжается, запасая энергию. Мощность источника:
$$ {P}_{\mathrm{ист}}={A}_{\mathrm{ист}}/t=\pm \mathcal{E}I$$.
Для участка цепи `1-2`, содержащего ЭДС (источник), работа тока $$ {A}_{\mathrm{Т}}$$, работа источника $$ {А}_{\mathrm{ист}}$$ и выделяемое количество теплоты $$ W$$ связаны равнением закона сохранения энергии: $$ {A}_{\mathrm{T}}+{A}_{\mathrm{ист}}=W$$.
Для участка цепи без ЭДС $$ {A}_{\mathrm{ист}}=0$$, $$ {А}_{\mathrm{Т}}=W$$ и количество теплоты равно работе тока. В этом случае количество теплоты можно выразить, используя закон Ома $$ I=U/R$$, через любые две из трёх величин: $$ I$$, $$ U$$ и $$ R$$:
$$ W={A}_{\mathrm{T}}={I}^{2}Rt=UIt={\displaystyle \frac{{U}^{2}}{R}}t$$.
Аналогичное соотношение и для мощностей:
$$ {P}_{\mathrm{T}}={I}^{2}R=UI={\displaystyle \frac{{U}^{2}}{R}}$$.
Найти количество теплоты, выделяющееся на внутреннем сопротивлении каждого аккумулятора и на резисторе $$ R$$ за время $$ t=10$$ c в схеме на рис. 17.1. Какие работы совершают аккумуляторы за это время?
$$ {\mathcal{E}}_{1}=12$$ B, $$ {\mathcal{E}}_{2}=3$$ B, $$ {r}_{1}=1$$ Ом, $$ {r}_{2}=2$$ Ом, $$ R=6$$ Ом.
![]() |
Рис. 17,1 |
Ток: $$ I=\left({\mathcal{E}}_{1}-{\mathcal{E}}_{2}\right)/(R+{r}_{1}+{r}_{2})=1$$ A.
Количество теплоты на аккумуляторах и на резисторе:
$$ {W}_{1}={I}^{2}{r}_{1}t=10$$ Дж,
$$ {W}_{2}={I}^{2}{r}_{2}t=20$$ Дж,
$$ W={I}^{2}Rt=60$$ Дж.
Направление действия ЭДС первого аккумулятора совпадает с направлением тока, он разряжается, его работа положительна: $$ {A}_{1}={\mathcal{E}}_{1}It=120$$ Дж.
ЭДС второго аккумулятора направлена против тока, он заряжается, поглощая энергию, его работа отрицательна: $$ A2=-{\mathcal{E}}_{2}It=-30$$ Дж.
Заметим, что `A_1+A_2=W_1+W_2+W`, что согласуется с законом сохранения энергии.
![]() |
Рис. 19.1 |
Конденсатор ёмкости $$ C$$, заряженный до напряжения $$ \mathcal{E}$$, подключается к батарее с ЭДС $$ 3\mathcal{E}$$ (рис. 19.1). Какое количество теплоты выделится в цепи после замыкания ключа?
После замыкания ключа ток в цепи скачком достигает некоторого значения и затем спадает до нуля, пока конденсатор не зарядится до напряжения $$ 3\mathcal{E}$$. Энергия конденсатора увеличится на
$$ ∆{W}_{C}=C{\left(3\mathcal{E}\right)}^{2}/2-c{\mathcal{E}}^{2}/2=4C{\mathcal{E}}^{2}$$.
Через батарею пройдёт заряд $$ Q$$, равный изменению заряда не верхней обкладке конденсатора: $$ ∆q=3C\mathcal{E}-C\mathcal{E}=2C\mathcal{E}$$.
Работа батареи: $$ A=∆q3\mathcal{E}=6C{\mathcal{E}}^{2}$$. По закону сохранения энергии:
$$ A=∆{W}_{C}+W$$.
В цепи выделится теплоты: $$ W=A-∆{W}_{C}=2C{\mathcal{E}}^{2}$$.
Под идеальным газом понимают газ, состоящий из молекул, удовлетворяющих двум условиям:
1) размеры молекул малы по сравнению со средним расстоянием между ними;
2) силы притяжения и отталкивания между молекулами проявляются только на расстояниях между ними, сравнимых с размерами молекул.
Молекулы идеального газа могут состоять из одного атома, двух и большего число атомов.
Для простейшей модели одноатомного идеального газа, представляющей собой совокупность маленьких твёрдых шариков, упруго соударяющихся друг с другом и со стенками сосуда, можно вывести, используя законы механики Ньютона,
основное уравнение молекулярно-кинетической теории идеального газа:
`p=2/3n barE`. (1)
Здесь `p` – давление газа, $$ n$$ – концентрация молекул (число молекул в единице объёма), `barE` - средняя кинетическая энергия поступательного движения одной молекулы (сумма кинетической энергии поступательного движения всех молекул в сосуде, делённая на число молекул в сосуде). Вывод этого уравнения дан в школьном учебнике.
Уравнение (1) оказывается справедливым и для многоатомного идеального газа, молекулы которого могут вращаться и обладать, поэтому, кинетической энергией вращения. Полная кинетическая энергия много-атомной молекулы складывается из кинетической энергии поступательного движения $$ {\displaystyle \frac{E={m}_{0}{v}^{2}}{2}}$$ ($$ {m}_{0}$$ - масса молекулы, $$ v$$ - скорость центра масс молекулы) и кинетической энергии вращения. В случае многоатомного идеального газа в (1) под `barE` подразумевается только средняя кинетическая энергия поступательного движения молекулы: $$ {\displaystyle \frac{\overline{E}={m}_{0}\overline{{v}^{2}}}{2}}$$ где $$ \overline{{v}^{2}}$$ - среднее значение квадрата скорости молекулы.
Пусть есть смесь нескольких идеальных газов. Для каждого газа можно записать уравнение $$ {p}_{i}={\displaystyle \frac{2}{3}}{n}_{i}{\overline{E}}_{i}$$, где $$ {n}_{i}$$ концентрация молекул - $$ i$$-го газа, $$ {p}_{i}$$ - парциальное давление этого газа (давление при мысленном удалении из сосуда молекул других газов). Поскольку давление на стенку сосуда обусловлено ударами о неё молекул, то общее давление смеси идеальных газов равно сумме парциальных давлений отдельных газов:
$$ p=\sum _{i}{p}_{i}$$.
Температуру можно ввести разными способами. Не останавливаясь на них, отметим, что у идеального газа средняя кинетическая энергия поступательного движения молекул `barE` связана с температурой $$ T$$ соотношением:
$$ \overline{E}={\displaystyle \frac{3}{2}}kT,$$ (2)
где $$ k=\mathrm{1,38}·{10}^{-23 }$$ Дж/К - постоянная Больцмана. При этом мы считаем, что движение молекул описывается законами механики Ньютона. В системе СИ температурас $$ T$$ измеряется в градусах Кельвина (К). В быту температуру часто измеряют в градусах Цельсия ($$ {}^{\circ }\mathrm{C}$$). Температуры, измеряемые по шкале Кельвина $$ T$$ и по шкале Цельсия $$ t$$ связаны численно соотношением: $$ T=t+273$$.
Итак, температура является мерой средней кинетической энергии поступательного движения молекул: $$ {m}_{0}\overline{{v}^{2}}/2=\frac{3}{2}kT$$. Величина
$$ {v}_{\mathrm{кв}}=\sqrt{\overline{{v}^{2}}}=\sqrt{{\displaystyle \frac{3kT}{{m}_{0}}}}$$ (3)
называется средней квадратичной скоростью. Ясно, что $$ {v}_{\mathrm{кв}}=\overline{{v}^{2}}$$. Она характеризует скорость хаотического движения молекул, называемого ещё тепловым движением. Интересно заметить, что средняя квадратичная скорость молекул идеального газа почти не отличается от средней арифметической скорости молекул $$ {v}_{\mathrm{ср}}$$ (среднее значение модуля скорости): $$ {v}_{\mathrm{кв}}\approx \mathrm{1,085}{v}_{\mathrm{ср}}$$. Поэтому под средней скоростью теплового движения молекул идеального газа можно понимать любую из этих скоростей.
Связь между давлением, концентрацией и температурой для идеального газа можно получить, исключив `barE` из равенств (1) и (2):
`p=nkT`. (4)
Поскольку $$ n={\displaystyle \frac{N}{V}}$$ ($$ N$$ – число молекул в сосуде объёмом $$ V$$), то равенство (4) принимает вид:
$$ pV=NkT$$. (5)
Пусть $$ m$$ – масса газа в сосуде, $$ \mu $$ – молярная масса данного газа, тогда $$ \nu ={\displaystyle \frac{m}{\mu }}$$ есть число молей газа в сосуде. Число молекул $$ N$$ в сосуде, число молей газа $$ \nu $$ и постоянная Авогадро $$ {N}_{А}$$ связаны соотношением $$ N=\nu {N}_{А}$$. Подставляя это выражение для $$ N$$ в (5), получаем: $$ pV=\nu {N}_{A}kT$$. Произведение постоянной Авогадро $$ {N}_{А}=\mathrm{6,02}·{10}^{23 }$$ моль$$ {}^{-1}$$ на постоянную Больцмана $$ k$$ называют универсальной газовой постоянной: $$ R={N}_{A}·k\approx \mathrm{8,31}$$ Дж/(моль$$ ·$$К) Таким образом,
$$ pV=\nu RT$$. (6)
Это уравнение, связывающее давление `p`, объём $$ V$$, температуру $$ T$$ (по шкале Кельвина) и число молей идеального газа $$ \nu $$, в записи называется уравнением Менделеева – Клапейрона.
$$ pV={\displaystyle \frac{m}{\mu }}RT$$ (7)
Из равенства (7) легко получить зависимость между давлением $$ p$$, плотностью $$ \rho $$ $$ (\rho ={\displaystyle \frac{m}{V}})$$ и температурой $$ T$$ идеального газа
$$ p={\displaystyle \frac{\rho }{\mu }}RT$$. (8)
Каждое из уравнений (5), (6) и (7), связывающих три макроскопических параметра газа `p`, $$ V$$ и $$ T$$ и называется уравнением состояния идеального газа. Здесь, конечно, речь идёт только о газе, находящемся в состоянии термодинамического равновесия, которое означает, что все макроскопические параметры не изменяются со временем.
Несколько слов о равновесных процессах. Если процесс с идеальным газом (или любой термодинамической системой) идёт достаточно медленно, то давление и температура газа во всём объёме газа успевают выровняться и принимают в каждый момент времени одинаковые по всему объёму значения. Это означает, что газ проходит через последовательность равновесных (почти равновесных) состояний. Такой процесс с газом называется равновесным. Другое название равновесного процесса – квазистатический. Все реальные процессы протекают с конечной скоростью и поэтому неравновесны. Но в ряде случае неравновесностью можно пренебречь. В равновесном процессе в каждый момент времени температура $$ T$$, давление `p` и объём $$ V$$ газа имеют вполне определённые значения, т. е. существует зависимость между `p` и $$ T$$, $$ V$$ и $$ T$$, `p` и $$ T$$. Это означает, что равновесный процесс можно изображать в виде графиков этих зависимостей. Неравновесный процесс изобразить графически невозможно.
Напомним ещё раз, что соотношения (4) – (8) справедливы только для идеальных газов. В смеси нескольких идеальных газов уравнения вида (4) – (8) справедливы для каждого газа в отдельности, причём объём $$ V$$ и температура $$ T$$ у всех газов одинаковы, а парциальные давления отдельных газов и общее давление в смеси связаны законом Дальтона.
Покажем, что для смеси идеальных газов общее давление `p`, объём $$ V$$, температура $$ T$$ и суммарное число молей связаны равенством
$$ pV=\nu RT$$ (9)
которое внешне совпадает с равенством (6) для одного газа.
Запишем уравнение состояния для каждого сорта газа:
$$ {p}_{1}V={\nu }_{1}RT$$,
$$ {p}_{2}V={\nu }_{2}RT$$,
$$ \dots \dots \dots $$
Сложив все уравнения и учтя, что $$ \nu ={\nu }_{1}+{\nu }_{2}+\cdots $$ и $$ p={p}_{1}+{p}_{2}+\cdots $$
(по закону Дальтона), получим (9).
Для смеси идеальных газов можно записать уравнение
$$ pV={\displaystyle \frac{m}{{\mu }_{\mathrm{ср}}}}RT$$ (10)
аналогичное уравнению (7) для одного газа. Здесь `p` – давление в смеси, $$ V$$ – объём смеси, $$ m={m}_{1}+{m}_{2}+\cdots $$ – масса смеси, $$ T$$ – температура смеси, $$ {\mu }_{\mathrm{ср}}={\displaystyle \frac{m}{\nu }}$$средняя молярная масса смеси, состоящей из $$ \nu ={\nu }_{1}+{\nu }_{2}+\cdots $$ молей.
Действительно, равенство (9) для смеси идеальных газов можно записать в виде $$ pV={\displaystyle \frac{m}{{\displaystyle m/\nu }}}RT$$ Учитывая, что $$ {\displaystyle \frac{m}{\nu }}$$ есть $$ {\mu }_{\mathrm{ср}}$$ получим (10). Например, средняя молярная масса атмосферного воздуха, в котором азот $$ ({\mu }_{{N}_{2}}=28 \mathrm{г}/\mathrm{моль})$$ преобладает над кислородом $$ ({\mu }_{{O}_{2}}=32 \mathrm{г}/\mathrm{моль})$$ равна `29` г/моль
Поведение реальных газов при достаточно низких температурах и больших плотностях газов уже плохо описывается моделью идеального газа.
В сосуде объёмом `4` л находится `6` г газа под давлением `80` кПа. Оценить среднюю квадратичную скорость молекул газа.
В задаче $$ V=4 \mathrm{л}=4·{10}^{-3} {\mathrm{м}}^{3}$$, $$ m=6 \mathrm{г} =6·{10}^{-3} \mathrm{кг}$$, $$ p=80 \mathrm{кПа}=8·{10}^{4} \mathrm{Па}$$. Запишем уравнение состояния газа `pV=NkT`.
Если через $$ {m}_{0}$$ обозначить массу молекулы, то $$ N={\displaystyle \frac{m}{{m}_{0}}}$$; $$ {\displaystyle \frac{{m}_{0}{v}_{\mathrm{кв}}^{2}}{2}}={\displaystyle \frac{3}{2}}kT$$. Исключая из записанных уравнений $$ N$$ и $$ T$$ находим среднюю квадратичную скорость
$$ {v}_{\mathrm{кв}}=\sqrt{{\displaystyle \frac{3pV}{m}}}=400 \mathrm{м}/\mathrm{с}$$.
Идеальный газ изотермически расширяют, затем изохорически нагревают и изобарически возвращают в исходное состояние. Нарисовать графики этого равновесного процесса в координатах $$ p,V$$; $$ V,T$$; $$p,T$$.
Построим график в координатах $$ p,V$$. В процессе изотермического расширения из состояния `1` в состояние `2` зависимость давления газа $$ p$$ от объёма $$ V$$ имеет вид: $$ p={\displaystyle \frac{\nu RT}{V}}$$, что следует из уравнения состояния идеального газа. Поскольку температура $$ T$$ постоянна, то $$ p={\displaystyle \frac{\mathrm{const}}{V}}$$, т. е. изотерма `1–2` является гиперболой (рис. 1). В дальнейшем при изохорическом нагревании `V="const"` и зависимость $$ p$$ от $$ V$$ изображается в координатах отрезком вертикальной прямой `2-3`.
Изобарический процесс изображается отрезком горизонтальной прямой `3–1`. Графики этого процесса в других координатах строятся аналогично и приведены на рис 2 и 3.
В сосуде находится смесь `10` г углекислого газа и `15` г азота. Найти плотность этой смеси при температуре `27^@"C"` и давлении `150` кПа Газы считать идеальными.
$$ {m}_{1}=10 \mathrm{г}={10}^{-2} \mathrm{кг}$$ – масса углекислого газа, $$ {m}_{2}=15 \mathrm{г} =15·{10}^{-3} \mathrm{кг}$$ – масса азота;
$$ {\mu }_{1}=44{\displaystyle \frac{\mathrm{г}}{\mathrm{моль}}}=44·{10}^{-3} {\displaystyle \frac{\mathrm{кг}}{\mathrm{моль}}}$$,
$$ {\mu }_{2}=28 {\displaystyle \frac{\mathrm{г}}{\mathrm{моль}}}=28·{10}^{-3}{\displaystyle \frac{\mathrm{кг}}{\mathrm{моль}}}$$ – молярные массы углекислого газа и азота; температура и давление $$ T=300 \mathrm{К}$$, $$ p=\mathrm{1,5}·{10}^{5} \mathrm{Па}$$.
Запишем уравнение состояния для каждого газа: $$ {p}_{1}V={\displaystyle \frac{{m}_{1}}{{\mu }_{1}}}RT$$, $$ {p}_{2}V={\displaystyle \frac{{m}_{2}}{{\mu }_{2}}}RT$$.
Сложив эти уравнения и учтя, что по закону Дальтона $$ p={p}_{1}+{p}_{2}$$, получим
$$ pV=({\displaystyle \frac{{m}_{1}}{{\mu }_{1}}}+{\displaystyle \frac{{m}_{2}}{{\mu }_{2}}})RT$$.
Следует отметить, что последнее уравнение можно было бы записать и сразу, если воспользоваться готовым результатом (9).
Выразим из полученного уравнения объём смеси $$ V$$ и подставим его в выражение для плотности смеси $$ \rho =({m}_{1}+{m}_{2})/V$$. Окончательно,
$$ \rho ={\displaystyle \frac{({m}_{1}+{m}_{2})p}{({\displaystyle \frac{{m}_{1}}{{\mu }_{1}}}+{\displaystyle \frac{{m}_{2}}{{\mu }_{2}}})RT}}\approx \mathrm{1,97} \mathrm{кг}/{\mathrm{м}}^{3}\approx \mathrm{2,0} \mathrm{кг}/{\mathrm{м}}^{3}$$.
При комнатной температуре четырёхокись азота частично диссоциирует на двуокись азота: $$ {\mathrm{N}}_{2}{\mathrm{O}}_{4}\to 2{\mathrm{NO}}_{2}$$. В откачанный сосуд объёмом $$ V= 250 {\mathrm{см}}^{3}$$ вводится $$ m=\mathrm{0,92} г$$ жидкой четырёх окиси азота. Когда температура в сосуде увеличивается до `t=27^@"C"`, жидкость полностью испаряется, а давление становится равным $$ p=129 \mathrm{кПа}$$. Какая часть четырёх окиси азота при этом диссоциирует?
Пусть диссоциирует масса $$ {m}_{1}$$. Тогда парциальное давление двуокиси азота $$ {p}_{1}={\displaystyle \frac{{m}_{1}}{{\mu }_{1}V}}RT$$, где $$ {\mu }_{1}=46·{10}^{-3} \mathrm{кг}/\mathrm{моль}$$. Парциальное давление четырёх окиси азота $$ {p}_{2}={\displaystyle \frac{m-{m}_{1}}{{\mu }_{2}V}}RT$$, где $$ {\mu }_{2}=92·{10}^{-3} \mathrm{кг}/\mathrm{моль}$$.
По закону Дальтона $$ p={p}_{1}+{p}_{2}$$. Подставив в последнее равенство выражения для $$ {p}_{1}$$ и $$ {p}_{2}$$, получаем:
$$ {m}_{1}={\displaystyle \frac{{\mu }_{1}({\displaystyle \frac{pV}{RT}}{\mu }_{2}-m)}{{\mu }_{2}-{\mu }_{1}}}\approx \mathrm{0,27} \mathrm{г}$$.
Возьмём макроскопическое тело и перейдём в систему отсчёта, связанную с этим телом. В состав внутренней энергии тела входят кинетическая энергия поступательного движения и вращательного движения молекул, энергия колебательного движения атомов в молекулах, потенциальная энергия взаимодействия молекул друг с другом, энергия электронов в атомах, внутриядерная энергия и др.
Будем рассматривать явления, в которых молекулы не изменяют своего строения, а температура ещё не так велика, чтобы была необходимость учитывать энергию колебаний атомов в молекуле. При таких явлениях изменение внутренней энергии тела происходит только за счёт изменения кинетической энергии молекул и потенциальной энергии их взаимодействия друг с другом. Для общего баланса энергии имеет значение не сама внутренняя энергия, а её изменение. Поэтому под внутренней энергией макроскопического тела можно подразумевать только сумму кинетической энергии теплового движения всех молекул и потенциальной энергии их взаимодействия.
Внутренняя энергия есть функция состояния тела, и определяется макроскопическими параметрами, характеризующими состояние термодинамического равновесия тела.
Потенциальная энергия взаимодействия молекул идеального газа принимается равной нулю. Поэтому внутренняя энергия идеального газа состоит только из кинетической энергии поступательного и вращательного движения молекул и зависит только от температуры. Внутренняя энергия идеального газа от объёма газа не зависит, поскольку расстояние между молекулами не влияет на внутреннюю энергию.
Потенциальная энергия взаимодействия молекул реальных газов, жидкостей и твёрдых тел зависит от расстояния между молекулами. В этом случае внутренняя энергия зависит не только от температуры, но и от объёма.
Найдём выражения для внутренней энергии одноатомного идеального газа. Средняя кинетическая энергия одной молекулы этого газа даётся выражением (2). Поскольку в газе массой `m` и молярной массой `mu` содержится молей и молекул, то сумма кинетической энергии всех молекул, содержащихся в массе `m` газа, равна
,
где – универсальная газовая постоянная.
Итак, внутренняя энергия одноатомного идеального газа
Анализ этой формулы подтверждает высказанное выше утверждение, что внутренняя энергия некоторой массы конкретного идеального газа зависит только от температуры.
Работа, совершаемая термодинамической системой (телом) над окружающими телами, равна по модулю и противоположна по знаку работе, совершаемой окружающими телами над системой.
При совершении работы часто встречается случай, когда объём тела меняется. Пусть тело (обычно – газ) находится под давлением $$ p$$ и при произвольном изменении формы изменяет свой объём на малую величину $$ ∆V$$. Работа, совершаемая телом над окружающими телами, равна
`DeltaA=pDeltaV`. (11)
При положительном $$ ∆V$$ (увеличение объёма газа) работа положительна, при $$ ∆V<0$$ – отрицательна. Вывод этого выражения для работы дан в школьном учебнике для частного случая расширения газа, находящегося в цилиндре под поршнем при постоянном давлении.
Любой равновесный процесс, в котором давление будет меняться по некоторому закону от объёма, можно разбить на последовательность элементарных процессов с достаточно малым изменением объёма в каждом процессе, вычислить элементарные работы во всех процессах и затем все их сложить. В результате получится работа тела (газа) в процессе с переменным давлением. В координатах `p`, $$ V$$ абсолютная величина этой работы равна площади под кривой, изображающей зависимость `p`от $$ V$$ при переходе из состояния `1` в состояние `2` (рис. 4). Математически работа выражается интегралом:
`A=int_(V_1)^(V_2) p(V)dV`.
В изобарном процессе, когда давление `p="const"`, работа тела над окружающими телами $$ A=p∆V$$, где $$ ∆V$$ изменение объёма тела за весь процесс, т. е. $$ ∆V$$ уже не обязательно мало.
Газ переходит из состояния с объёмом $$ {V}_{1}$$ и давлением $$ {p}_{1}$$ в состояние с объёмом $$ {V}_{2}$$ и давлением $$ {p}_{2}$$ в процессе, при котором его давление $$ P$$ зависит от объёма $$ V$$ линейно (рис. 5). Найти работу газа (над окружающими телами).
Работа газа равна заштрихованной на рис. 5 площади трапеции:
$$ A={\displaystyle \frac{1}{2}}({p}_{1}+{p}_{2})({V}_{2}-{V}_{1})$$.
Энергия, передаваемая телу окружающей средой (другим телом) без совершения работы, называется количеством теплоты. Такой процесс передачи энергии называется теплообменом.
Сообщим телу (термодинамической системе) в некотором процессе небольшое количество теплоты . Будем считать , если тело получает теплоту, и , если отдаёт теплоту. Температура тела при этом изменяется на величину . При повышении температуры , при понижении температуры . Теплоёмкостью тела в данном процессе называется величина
(12)
Из определения теплоёмкости не следует, что она должна оставаться постоянной в данном процессе. Теплоёмкость может изменяться в течение процесса.
![]() |
Ясно, что теплоёмкость одного и того же тела может быть положительной, отрицательной, нулевой и даже бесконечной в зависимости от характера процесса. Приведём примеры. Пусть есть газ в цилиндре с поршнем (рис. 6). Осуществим с этим газом четыре различных процесса.
Будем подогревать газ, закрепив поршень. В таком процессе, когда объём газа постоянен, и . Следовательно,
Передвигаем поршень влево, уменьшая объём газа. Газ будет нагреваться, т. е. . Дадим возможность газу отдавать тепло через стенки цилиндра окружающей среде так, чтобы температура газа всё же повышалась (поместим цилиндр в более холодную среду).
Тогда количество теплоты, сообщённое газу, и теплоёмкость газа в таком процессе отрицательна.
Процесс сжатия газа проведём адиабатически, заключив цилиндр в теплонепроницаемую оболочку и теплоизолировав поверхность поршня от газа. В таком процессе , и теплоёмкость газа равна нулю.
Будем сообщать газу теплоту, двигая при этом поршень вправо так, чтобы температура оставалась постоянной (изотермический процесс). Тогда и и .
Введём понятия удельной и молярной теплоёмкостей.
Удельная теплоёмкость – теплоёмкость единицы массы тела:
. (13)
Молярная теплоёмкость – теплоёмкость одного моля тела:
. (14)
Здесь – число молей тела, – масса тела.
Очевидно, что знаки удельной и молярной теплоёмкостей совпадают со знаком теплоёмкости тела в данном процессе. Легко показать, что
; .
Внутренняя энергия тела (термодинамической системы) может меняться при совершении работы и в процессе теплопередачи. Закон сохранения и превращения энергии, распространённый на тепловые явления, называется первым законом термодинамики (первым началом термодинамики) и записывается в виде
$$ Q=∆U+A$$. (15)
Здесь $$ Q$$ – количество теплоты, сообщённое системе. $$ Q$$ считается положительным, если система в процессе теплопередачи получает энергию, и отрицательным, если отдаёт энергию, $$ ∆U$$ – изменение внутренней энергии системы, $$ A$$ – работа, совершаемая системой над окружающими телами. В зависимости от характера процесса $$ Q$$, $$ ∆U$$ и $$ A$$ могут быть любого знака и даже нулевыми.
Покажем, что для любого идеального газа (одноатомного, двухатомного, многоатомного) изменение внутренней энергии $$ ∆U$$ в любом процессе можно находить по формуле
$$ ∆U=\nu {c}_{V}∆T$$. (16)
Здесь $$ Q$$ – изменение температуры в этом процессе, $$ \nu $$ – число молей газа, $$ {c}_{V}$$ – молярная теплоёмкость газа при постоянном объёме.
Для доказательства проведём с газом процесс при постоянном объёме, изменив температуру от $$ {T}_{1}$$ до $$ {T}_{2}$$ $$ (∆T={T}_{2}-{T}_{1})$$. Тогда количество теплоты $$ Q=\nu {c}_{V}·∆T$$, согласно определению теплоёмкости, а работа газа $$ A=0$$, т. к. объём `V="const"`. По первому закону термодинамики $$ Q=∆U+A$$, и поэтому $$ \nu {c}_{V}∆T=∆U$$. Поскольку внутренняя энергия идеального газа зависит только от температуры, то в любом другом процессе, когда температура меняется от $$ {T}_{1}$$ до $$ {T}_{2}$$, изменение внутренней энергии находится по формуле, полученной в процессе с `V="const"`.
У идеального газа при $$ T=0$$ значение внутренней энергии полагается равным нулю. Если считать ещё, что $$ {c}_{V}$$ не зависит от температуры, т. е. `c_V="const"`, то можно записать, что
$$ U=\nu {c}_{V}T$$ (17)
Найдём значение молярной теплоёмкости при постоянном объёме у одноатомного идеального газа. Поскольку $$ ∆U=\nu {c}_{V}∆T$$ и $$ ∆U={\displaystyle \frac{3}{2}}R\nu ∆T$$, то $$ {c}_{V}={\displaystyle \frac{3}{2}}R$$. Интересно заметить, что молярная теплоёмкость при постоянном объёме у всех одноатомных идеальных газов получилась одна и та же:
$$ {c}_{V}={\displaystyle \frac{3}{2}}R$$ (18)
Оказывается, что молярные теплоёмкости при постоянном объёме у всех двухатомных идеальных газов равны $$ {\displaystyle \frac{5}{2}}R$$, а у трёхатомных и многоатомных (атомы у которых расположены не на одной прямой) – $$ 3R$$. Удельные же теплоёмкости у всех одноатомных идеальных газов различные и зависят от молярной массы. Аналогично для двухатомных и многоатомных газов. Заметим, что указанные значения молярной теплоёмкости верны, если температура газа не слишком велика, и поэтому колебания атомов в молекуле не учитываются.
Приведём полезную таблицу с выражениями для молярной теплоёмкости $$ {c}_{V}$$ и средней кинетической энергии `barE` поступательного и вращательного движений молекулы у одноатомного, двухатомного и многоатомного идеального газа (в этой таблице $$ k$$ – постоянная Больцмана):
Газ | |||
одноатомный | двухатомный | многоатомный | |
`barE` | `3/2kT` | `5/2kT` | `3kT` |
`c_V` | `3/2R` | `5/2R` | `3R` |
В заключение выведем уравнение Роберта Майера
$$ {c}_{p}={c}_{V}+R$$, (19)
связывающее молярные теплоёмкости при постоянном давлении $$ {c}_{p}$$ и постоянном объёме $$ {c}_{V}$$ для любого идеального газа.
Для вывода проведём изобарический процесс с молями идеального газа, переведя газ из состояния с параметрами $$ p$$, $$ {V}_{1}$$, $$ {T}_{1}$$ в состояние с параметрами $$ p$$, $$ {V}_{2}$$, $$ {T}_{2}$$. По первому закону термодинамики $$ \nu {c}_{p}∆T=\nu {c}_{V}∆T+p∆V$$. Запишем уравнения состояния газа $$ p{V}_{1}=\nu R{T}_{1}$$ и $$ p{V}_{2}=\nu R{T}_{2}$$. Вычтя из одного уравнения другое и учтя, что $$ {V}_{2}-{V}_{1}=∆V$$ и $$ {T}_{2}-{T}_{1}=∆T$$, получим $$ p∆V=\nu R∆T$$. Таким образом, $$ \nu {c}_{p}∆T=\nu {c}_{V}∆T+\nu R∆T$$. Отсюда $$ {c}_{p}={c}_{V}+R$$.
Теплоизолированный сосуд разделён на две части перегородкой. В одной части находится $$ {\nu }_{1}$$ молей молекулярного кислорода ($$ {\mathrm{O}}_{2}$$) при температуре $$ {T}_{1}$$, а в другом – $$ {\nu }_{2}$$ молей азота ($$ {N}_{2}$$) при температуре $$ {T}_{2}$$. Какая температура установится в смеси газов после того, как в перегородке появится отверстие?
Рассмотрим систему из двух газов. Оба газа двухатомные. У них одинаковая молярная теплоёмкость при постоянном объёме $$ {c}_{V}$$. Система из двух газов не получает тепла от других тел и работы над телами, не входящими в систему, не совершает. Поэтому внутренняя энергия системы сохраняется:
$$ {\nu }_{1}{c}_{V}{T}_{1}+{\nu }_{2}{c}_{V}{T}_{2}={\nu }_{1}{c}_{v}T+{\nu }_{2}{c}_{V}T$$
Отсюда температура смеси
$$ T={\displaystyle \frac{{\nu }_{1}{T}_{1}+{\nu }_{2}{T}_{2}}{{\nu }_{1}+{\nu }_{2}}}$$.
Идеальный газ массой $$ m=1 \mathrm{кг}$$ находится под давлением $$ P=\mathrm{1,5}·{10}^{5} \mathrm{Па}$$. Газ нагрели, давая ему расширяться. Какова удельная теплоёмкость газа в этом процессе, если его температура повысилась на $$ ∆T= 2 \mathrm{К}$$, а объём увеличился на $$ ∆V=\mathrm{0,002} {\mathrm{м}}^{3}$$? Удельная теплоёмкость этого газа при постоянном объёме $$ {c}_{\mathrm{уд}V}=700 \mathrm{Дж}/(\mathrm{кг}·\mathrm{К})$$. Предполагается, что изменения параметров газа в результате проведения процесса малы.
Удельная теплоёмкость в данном процессе
$$ {c}_{\mathrm{уд}}={\displaystyle \frac{∆Q}{m∆T}}$$
По первому закону термодинамики $$ ∆Q=m{c}_{удV}∆T+p∆V$$. Итак,
$$ {c}_{\mathrm{уд}}={c}_{\mathrm{уд}V}+{\displaystyle \frac{p∆V}{m∆T}}=850 \mathrm{Дж}/(\mathrm{кг}·\mathrm{К})$$.
В цилиндре под поршнем находится некоторая масса воздуха. На его нагревание при постоянном давлении затрачено количество теплоты $$ Q=10 \mathrm{кДж}$$. Найти работу, совершённую при этом газом. Удельная теплоёмкость воздуха при постоянном давлении $$ {c}_{\mathrm{уд}P}={10}^{3} \mathrm{Дж}/(\mathrm{кг}·\mathrm{К})$$ю Молярная масса воздуха $$ \mu =29 \mathrm{г}/\mathrm{моль}$$.
1 способ. Пусть газ перевели из состояния с параметрами $$ p$$, $$ {V}_{1}$$, $$ {T}_{1}$$ в состояние с параметрами $$ p$$, $$ {V}_{2}$$, $$ {T}_{2}$$. Запишем уравнение Менделеева – Клапейрона для обоих состояний и вычтем из одного уравнения другое. Учитывая, что $$ {V}_{2}-{V}_{1}=∆V$$, $$ {T}_{2}-{T}_{1}=∆T$$, имеем $$ p∆V={\displaystyle \frac{m}{\mu }}R∆T$$. Но $$ p∆V=A$$ – работа газа. Поэтому $$ A={\displaystyle \frac{m}{\mu }}R∆T$$. При изобарическом процессе $$ Q=m{c}_{\mathrm{уд}p}∆T$$. Окончательно,
$$ A={\displaystyle \frac{RQ}{\mu {c}_{\mathrm{уд}p}}}\approx \mathrm{2,74}·{10}^{3 } \mathrm{Дж}=\mathrm{2,74} \mathrm{кДж}$$
2 способ. Согласно уравнению Р. Майера удельные теплоёмкости при постоянном давлениии $$ {c}_{\mathrm{уд}p}$$ и при постоянном объёме $$ {c}_{\mathrm{уд}V}$$ связаны соотношением $$ {c}_{\mathrm{уд}V}={c}_{\mathrm{уд}p}-{\displaystyle \frac{R}{\mu }}$$. По первому закону термодинамики $$ Q=m{c}_{\mathrm{уд}V}∆T+A$$. Подставляя в последнее равенство $$ m={\displaystyle \frac{Q}{{c}_{\mathrm{уд}}∆T}}$$ и выражение для $$ {c}_{\mathrm{уд}V}$$ находим `A`.
называется термодинамический процесс с телом, в результате совершения которого тело, пройдя через ряд состояний, возвращается в исходное состояние.
Если все процессы в цикле равновесные, то цикл считается равновесными. Его можноизобразить графически, и получится замкнутая кривая. На рис. 7 показан график зависимости давления `p` от объёма `V` (диаграмма $$ p-V$$) для некоторого цикла `1–2–3–4–1`, совершаемого газом. На участке `4–1–2` газ расширяется и совершает положительную работу `A_1`, численно равную площади фигуры $$ {V}_{1}412{V}_{2}$$. На участке `2–3–4` газ сжимается и совершает отрицательную работу $$ {A}_{2}$$, модуль которой равен площади фигуры $$ {V}_{2}234{V}_{1}$$. Полная работа газа за цикл $$ A={A}_{1}+{A}_{2}$$, т. е. положительна и равна площади фигуры `1–2–3–4–1`, изображающей цикл на диаграмме $$ p-V$$.
называется круговой процесс, в котором тело совершает положительную работу за цикл. Прямой равновесный цикл на диаграмме $$ p-V$$ изображается замкнутой кривой, которая обходится по часовой стрелке. Пример прямого цикла дан на рис. 7.
называется круговой процесс, в котором тело совершает отрицательную работу за цикл. На диаграмме $$ p-V$$ замкнутая кривая равновесного обратного цикла обходится против часовой стрелки.
В любом равновесном цикле работа за цикл равна по модулю площади фигуры, ограниченной кривой на диаграмме $$ p-V$$.
В круговом процессе тело возвращается в исходное состояние, т. е. в состояние с первоначальной внутренней энергией. Это значит, что изменение внутренней энергии за цикл равно нулю: $$ ∆U=0$$. Так как по первому закону термодинамики для всего цикла $$ Q=∆U+A$$, то $$ Q=A$$. Итак, алгебраическая сумма всех количеств теплоты, полученной телом за цикл, равна работе тела за цикл.
На некоторых участках прямого цикла тело получает от окружающих тел количество теплоты $$ {Q}^{+}$$ $$ ({Q}^{+}>0)$$, а на некоторых отдаёт $$ {Q}^{-}$$ т. е. получает отрицательное количество теплоты `«-Q^(-)»` `(Q^(-)>0)`.
За цикл тело совершает положительную работу `A`.
Коэффициентом полезного действия прямого цикла называется величина $$ \eta ={\displaystyle \frac{A}{{Q}^{+}}}$$.
Поскольку $$ A={Q}^{+}+(-{Q}^{-})$$, то
$$ \eta ={\displaystyle \frac{{Q}^{+}-{Q}^{-}}{{Q}^{+}}}=1-{\displaystyle \frac{{Q}^{-}}{{Q}^{+}}}$$. (20)
Для обратного цикла коэффициент полезного действия не вводится.
Пусть есть тело, называемое рабочим телом, которое может совершать цикл (не обязательно равновесный), периодически вступая в тепловой контакт с двумя телами. Тело с более высокой температурой назовём условно нагревателем, а с более низкой температурой – холодильником. За цикл рабочее тело совершает положительную или отрицательную работу $$ A$$. Такое устройство будем называть тепловой машиной. Тепловая машина, которая служит для получения механической работы, называется тепловым двигателем. Тепловая машина, служащая для передачи количества теплоты от менее нагретого тела (холодильника) к более нагретому (нагревателю), используя работу окружающих тел над рабочим телом, называется тепловым насосом или холодильной установкой (холодильником). Деление на тепловые насосы и холодильные установки условное, связанное с предназначением этих тепловых машин. Тепловой насос используется для поддержания в помещении температуры, которая выше температуры окружающей среды. Холодильная установка используется для поддержания в некотором объёме (камере) температуры более низкой, чем снаружи.
В тепловом двигателе рабочее тело совершает прямой цикл, а в тепловом насосе и холодильной установке – обратный.
В тепловом двигателе рабочее тело получает за цикл от нагревателя количество теплоты $$ {Q}^{+}$$ (рис. 8) и отдаёт холодильнику положительное количество теплоты $$ {Q}^{-}$$ (получает от холодильника отрицательное количество теплоты «$$ -{Q}^{-}$$»). При этом за цикл рабочее тело совершает работу $$ A$$. Коэффициентом полезного действия (КПД) теплового двигателя называется КПД соответствующего прямого цикла, т. е. отношение совершаемой за цикл работы $$ A$$ к полученному за цикл от нагревателя количеству теплоты $$ {Q}^{+}:$$
$$ \eta ={\displaystyle \frac{A}{{Q}^{+}}}$$.
По первому закону термодинамики, применённому к рабочему телу теплового двигателя за цикл, $$ {Q}^{+}+(-{Q}^{-})=A.$$ Поэтому
$$ \eta ={\displaystyle \frac{{Q}^{+}-{Q}^{-}}{{Q}^{+}}}=1-{\displaystyle \frac{{Q}^{-}}{{Q}^{+}}}$$.
Видим, что КПД теплового двигателя меньше единицы. Причиной этого является то, что для обеспечения периодичности в работе теплового двигателя необходимо часть тепла, взятого у нагревателя, обязательно отдать холодильнику.
С. Карно (1796 – 1832) установил, что максимальный КПД теплового двигателя, работающего с нагревателем температуры $$ {T}_{1}$$ и холодильником температуры $$ {T}_{2}$$, независимо от рабочего тела есть
$$ \eta =1-{\displaystyle \frac{{T}_{2}}{{T}_{1}}}$$. (21)
Это достигается, если рабочее тело совершает цикл Карно, т. е. равновесный цикл, состоящий из двух адиабат и двух изотерм с температурами $$ {T}_{1}$$ и $$ {T}_{2}$$. На изотерме с $$ {T}_{1}$$ рабочее тело получает тепло от нагревателя, а на изотерме с $$ {T}_{2}$$ – отдаёт тепло холодильнику. Цикл Карно для идеального газа изображён на рис. 9: `1-2` и `3-4` – изотермы, `2-3` и `4-1` – адиабаты. Тепловая машина, работающая по прямому или обратному циклу Карно, называется идеальной тепловой машиной.
Газ, совершающий цикл Карно, отдаёт холодильнику `70%` теплоты, полученной от нагревателя. Температура нагревателя $$ {T}_{1}=400 \mathrm{К}$$. Найти температуру холодильника.
Пусть газ получает за цикл от нагревателя количество теплоты $$ {Q}_{1}$$. Тогда холодильник получает от газа количество теплоты $$ \mathrm{0,7}{Q}_{1}$$. Применив первый закон термодинамики для всего цикла, получим, что $$ {Q}_{1}+(-\mathrm{0,7}{Q}_{1})=A$$. Отсюда работа за цикл $$ A=\mathrm{0,3}{Q}_{1}$$ . КПД цикла $$ \eta ={\displaystyle \frac{A}{{Q}_{1}}}=\mathrm{0,3}$$. Поскольку для цикла Карно $$ \eta =1-{\displaystyle \frac{{T}_{2}}{{T}_{1}}}$$, то температура холодильника
$$ {T}_{2}={T}_{1}(1-\eta )=\mathrm{0,7}{T}_{1}=280 \mathrm{К}$$.
КПД тепловой машины, работающей по циклу (рис. 10), состоящему из изотермы `1 – 2`, изохоры `2 – 3` и адиабатического процесса `3 – 1`, равен $$ \eta $$, а разность максимальной и минимальной температур газа в цикле равна $$ ∆T$$. Найти работу, совершённую $$ \nu $$ молями одноатомного идеального газа в изотермическом процессе.
При решении задач, в которых фигурирует КПД цикла, полезно предварительно проанализировать все участки цикла, используя первый закон термодинамики, и выявить участки, где рабочее тело получает и где отдаёт тепло.
Проведём мысленно ряд изотерм на диаграмме `p-V`. Тогда станет ясно, что максимальная температура в цикле будет на изотерме `1 – 2`, а минимальная в точке `3`. Обозначим их через $$ {T}_{1}$$ и $$ {T}_{3}$$ соответственно.
Для участка `1 – 2` изменение внутренней энергии $$ {U}_{2}-{U}_{1}=0$$. По первому закону термодинамики $$ {Q}_{12}=({U}_{2}-{U}_{1})+{A}_{12}$$. Так как на участке `1 – 2` газ расширялся, то работа газа $$ {A}_{12}>0$$. Значит, и подведённое к газу тепло на этом участке $$ {Q}_{12}>0$$ , причём $$ {Q}_{12}={A}_{12}$$ .
На участке `2 – 3` работа газа равна нулю. Поэтому $$ {Q}_{23}={U}_{3}-{U}_{2}$$. Воспользовавшись записанными выше выражениями для $$ {U}_{3}$$ и $$ {U}_{2}$$ и тем, что $$ {T}_{1}-{T}_{3}=∆T$$, получим . Это означает, что на участке `2 – 3` газ получает отрицательное количество теплоты, т. е. фактически отдаёт тепло.
На участке `3 – 1` теплообмена нет, т. е. $$ {Q}_{31}=0$$ и по 1-му закону термодинамики $$ 0=({U}_{1}-{U}_{3})+{A}_{31}$$. Тогда работа газа
$$ {A}_{31}={U}_{3}-{U}_{1}=\nu {c}_{V}\left({T}_{3}-{T}_{1}\right)=-\nu {c}_{V}∆T$$.
Итак, за цикл газ совершил работу $$ {A}_{12}+{A}_{31}={A}_{12}-\nu {c}_{V}∆T$$ и получил тепло только на участке `1 – 2`. КПД цикла
$$ \eta ={\displaystyle \frac{{A}_{12}+{A}_{31}}{{Q}_{12}}}={\displaystyle \frac{{A}_{12}-\nu {c}_{V}∆T}{{A}_{12}}}$$.
Так как $$ {c}_{V}={\displaystyle \frac{3}{2}}R$$, то работа газа на изотерме
$$ {A}_{12}={\displaystyle \frac{3\nu R∆T}{2(1-\eta )}}$$.
Состояния, в которых может находиться то или иное вещество, можно разделить на так называемые агрегатные состояния: твёрдое, жидкое, газообразное. У некоторых веществ нет резкой границы между различными агрегатными состояниями. Например, при нагревании стекла (или другого аморфного вещества) происходит постепенное его размягчение, и невозможно установить момент перехода из твёрдого состояния в жидкое.
Вещество может переходить из одного состояния в другое. Если при этом меняется агрегатное состояние вещества или скачком меняются некоторые характеристики и физические свойства вещества (объём, плотность, теплопроводность, теплоёмкость и др.), то говорят, что произошёл фазовый переход – вещество перешло из одной фазы в другую.
называется физически однородная часть вещества, отделённая от других частей границей раздела.
Пусть в сосуде заключена вода, над которой находится смесь воздуха и водяных паров. Эта система является двухфазной, состоящей из жидкой фазы и газообразной. Можно сделать систему и с двумя различными жидкими фазами: капелька ртути в сосуде с водой. Капельки тумана в воздухе образуют с ним двухфазную систему.
Условия равновесия фаз для многокомпонентных веществ, т. е. веществ, состоящих из однородной смеси нескольких сортов молекул, достаточно сложны. Например, для смеси вода – спирт газообразная и жидкая фазы этой смеси при равновесии имеют различные концентрации своих компонент, зависящие от давления и температуры. Ниже будут рассмотрены фазовые превращения только для однокомпонентных веществ.
При заданном давлении существует вполне определённая температура, при которой две фазы однокомпонентного вещества находятся в равновесии и могут переходить друг в друга при этой температуре. Пока одна фаза полностью не перейдёт в другую, температура будет оставаться постоянной, несмотря на подвод или отвод тепла. Поясним это на примерах.
Рассмотрим двухфазную систему вода – пар, находящуюся в замкнутом сосуде. При давлении $$ {p}_{0}=1 атм\approx {10}^{5} \mathrm{Па}$$ равновесие между паром и водой наступит при `100^@"C"`. Подвод к системе тепла вызывает кипение – переход жидкости в газ при постоянной температуре. Отвод от системы тепла вызывает конденсацию – переход пара в жидкость. При давлении $$ \mathrm{0,58}{p}_{0}$$ (почти вдвое меньше нормального атмосферного) равновесие между паром и водой наступает при `85^@"C"`. При давлении $$ 2{p}_{0}$$ равновесие фаз достигается при температуре `~~120^@"C"` (такие условия в скороварке).
Другой пример. Фазовое равновесие между льдом и водой при внешнем давлении $$ {p}_{0}=1 \mathrm{атм}$$ осуществляется, как известно, при `0^@"C"`. Увеличение внешнего давления на одну атмосферу понижает температуру фазового перехода на `0,007^@"C"`. Это значит, что температура плавления льда понизится на эту же незначительную величину.
Фазовые переходы для однокомпонентного вещества, сопровождающиеся переходом из одного агрегатного состояния в другое, идут с поглощением или выделением тепла. К ним относятся плавление и кристаллизация, испарение и конденсация. Причём, если при переходе из одной фазы в другую тепло выделяется, то при обратном переходе поглощается такое же количество теплоты.
Чтобы расплавить кристаллическое тело массой $$ m$$, надо подвести количество теплоты
$$ Q=\lambda ·m$$. (22)
Коэффициент пропорциональности $$ \lambda $$ называется удельной теплотой плавления. Вообще говоря, $$ \lambda $$ зависит от той температуры, при которой происходит фазовый переход (температура плавления). Во многих реальных ситуациях этой зависимостью можно пренебречь.
Для превращения в пар жидкости массой `m` надо подвести количество теплоты
$$ Q=r·m$$ (23)
Коэффициент пропорциональности $$ r$$ называется удельной теплотой парообразования. $$ r$$ зависит от температуры кипения, т. е. от той температуры, при которой осуществляется фазовое равновесие жидкость – пар для заданного давления.
Значения $$ \lambda $$ и $$ r$$ для разных веществ даются в таблицах обычно для тех температур фазовых переходов, которые соответствуют нормальному атмосферному давлению. При этом в величины $$ \lambda $$ и особенно $$ r$$ входит не только изменение внутренней энергии вещества при переходе одной фазы в другую, но и работа этого вещества над внешними телами при фазовом переходе! Например, удельная теплота парообразования воды при `100^@"C"` и $$ p\approx {10}^{5} \mathrm{Па}$$ на `9//10` состоит из изменения внутренней энергии вода - пар и на `1//10` (чуть меньше) из работы, которую совершает расширяющийся пар над окружающими телами.
В латунном калориметре массой $$ {m}_{1}=200 \mathrm{г}$$ находится кусок льда массой $$ {m}_{2}=100 \mathrm{г}$$ при температуре `t_1=-10^@"C"`. Сколько пара, имеющего температуру `t_2=100^@"C"`, необходимо впустить в калориметр, чтобы образовавшаяся вода имела температуру `40^@"C"`?
Удельные теплоёмкости латуни, льда и воды $$ {c}_{1}=\mathrm{0,4}·{10}^{3 } \mathrm{Дж}/(\mathrm{кг}·\mathrm{К})$$,
$$ {c}_{2}=\mathrm{2,1}·{10}^{3} \mathrm{Дж}/(\mathrm{кг}·\mathrm{К})$$ ,
$$ {c}_{3}=\mathrm{4,19}·{10}^{3} \mathrm{Дж}/(\mathrm{кг}·\mathrm{К})$$ соответственно; удельная теплота парообразования воды `r=22,6*10^5 "Дж"//"кг"`;
удельная теплота плавления льда $$ \lambda =\mathrm{33,6}·{10}^{4} \mathrm{Дж}/\mathrm{кг}$$
При конденсации пара массой $$ m$$ при `100^@"C"` ($$ {T}_{2}=373 \mathrm{К}$$) выделяется количество теплоты $$ {Q}_{1}=rm$$. При охлаждении получившейся воды от $$ {T}_{2}=373 \mathrm{К}$$ до $$ \theta =313 К$$ `(40^@"C")` выделяется количество теплоты $$ {Q}_{2}={c}_{3}m({T}_{2}-\theta ).$$
При нагревании льда от $$ {T}_{1}=263 \mathrm{К}$$ `(-10^@"C")` до $$ {T}_{0}=273 \mathrm{К}$$ `(0^@"C")` поглощается количество теплоты $$ {Q}_{3}={c}_{2}{m}_{2}({T}_{0}-{T}_{1})$$. При плавлении льда поглощается количество теплоты $$ {Q}_{4}=\lambda {m}_{2}$$. При нагревании получившейся воды от $$ {T}_{0}$$ до $$ \theta $$ поглощается количество теплоты $$ {Q}_{5}={c}_{3}{m}_{2}(\theta -{T}_{0})$$. Для нагревания калориметра от $$ {T}_{1} $$ до $$ \theta $$ требуется количество теплоты $$ {Q}_{6}={c}_{1}{m}_{1}(\theta -{T}_{1})$$. По закону сохранения энергии
$$ {Q}_{1}+{Q}_{2}={Q}_{3}+{Q}_{4}+{Q}_{5}+{Q}_{6}$$, или
$$ rm+{c}_{3}m({T}_{2}-\theta )={c}_{2}{m}_{2}({T}_{0}-{T}_{1})+\lambda {m}_{2}+{c}_{3}{m}_{2}(\theta -{T}_{0})+{c}_{1}{m}_{1}(\theta -{T}_{1})$$.
Отсюда $$ m={\displaystyle \frac{{c}_{2}{m}_{2}({T}_{0}-{T}_{1})+\lambda {m}_{2}+{c}_{3}{m}_{2}(\theta -{T}_{0})+{c}_{1}{m}_{1}(\theta -{T}_{1})}{r+{c}_{3}({T}_{2}-\theta )}}\approx $$
$$ \approx 22·{10}^{-3} \mathrm{кг}=22 \mathrm{г}$$.
называется пар, находящийся в динамическом равновесии со своей жидкостью: скорость испарения равна скорости конденсации.
Давление и плотность насыщенного пара для данного вещества зависят от его температуры и увеличиваются при увеличении температуры.
Условие кипения жидкости – это условие роста пузырьков насыщенного пара в жидкости. Пузырёк может расти, если давление насыщенного пара внутри него будет не меньше внешнего давления. Итак,
жидкость кипит при той температуре, при которой давление её насыщенных паров равно внешнему давлению.
Приведём полезный пример.
Известно, что при нормальном атмосферном давлении `p_0~~10^5 "Па"` вода кипит при `100^@"C"`. Это означает, что давление насыщенных паров воды при `100^@"C"` равно `p_0~~10^5 "Па"`.
Пары воды в атмосферном воздухе обычно ненасыщенные. Абсолютной влажностью воздуха называется плотность водяных паров `rho`. Относительной влажностью воздуха называется величина
`varphi=p/p_"нас"`. (24)
Здесь `p` – парциальное давление паров воды при данной температуре в смеси воздух – пары воды, `p_"нас"` – парциальное давление насыщенных водяных паров при той же температуре. Опыт показывает, что `p_"нас"` зависит только от температуры и не зависит от плотности и состава воздуха.
Если пар считать идеальным газом, то `p=rho/muRT`, `p_"нас"=(rho_"нас")/muRT`,
где `rho` и `rho_"нас"` – плотности ненасыщенного и насыщенного водяного пара, `mu=18 "г"//"моль"`. Деление одного уравнения на другое даёт `p/p_"нас"=rho/rho_"нас"`. Итак,
`varphi=p/p_"нас"~~rho/rho_"нас"`. (25)
Воздух имеет температуру `60^@"C"` и абсолютную влажность `50 "г"//"м"^3`. Какой будет абсолютная влажность этого воздуха, если температура понизится до `10^@"C"`? Известно, что при `10^@"C"` давление насыщенного пара воды `p=1230 "Па"`.
При `10^@"C"` `(T=283 "К")` плотность насыщенных паров воды
`rho=(mup)/(RT)=9,4*10^(-3) "кг"//"м"^3=9,4 "г"//"м"^3`.
Эта величина меньше, чем `50 "г"//"м"^3`. Поэтому часть пара сконденсируется, и абсолютная влажность будет `9,4 "г"//"м"^3`.
Настоящее задание посвящено основным законам механики - законам Ньютона и их следствиям: законам изменения и сохранения импульса и энергии материальной точки и систем материальных точек. Повторение этих разделов вызвано двумя причинами: первая обусловлена важностью этих законов в физике; вторая причина связана с тем, что в течение учебного года учащиеся 11 класса примут участие в олимпиадах разных уровней, а по завершении учебного года будут сдавать ЕГЭ. К контрольным мероприятиям следует готовиться. Задание адресовано тем, кто хочет восстановить и углубить свои знания по механике в рамках курса физики средней школы. Поэтому наряду с простыми задачами рассмотрены и достаточно сложные, техника решения которых порой недостаточно подробно обсуждается в школьном курсе физики.
Обращаем внимание читателя, что перед работой с Заданием ему следует изучить (повторить) соответствующие разделы школьного учебника и выполнить упражнения, представленные в учебнике.
Механика - наука, изучающая движение тел и способы описания движения и взаимодействия тел. Для описания механического движения следует выбрать систему отсчёта, представляющую собой тело отсчёта, с которым неподвижно связывают систему координат, и часы для регистрации положения точки в различные моменты времени.
В механике Ньютона, т. е. при рассмотрении движений со скоростями, малыми по сравнению со скоростью света, показания неподвижных и движущихся часов считаются одинаковыми.
Выбор систем отсчёта диктуется соображениями удобства и простоты описания движения.
Для математически точного описания движения используются модели физических тел. Материальная точка - модель тела, применяемая в механике в тех случаях, когда размерами тела можно пренебречь по сравнению с характерными расстояниями, на которых рассматривается движение тела. В геометрии для описания таких тел используется понятие точки. Положение материальной точки в пространстве определяется положением изображающей её геометрической точки. Единственная механическая (негеометрическая) характеристика материальной точки - её масса.
Рассмотрение задач описания движения традиционно начинается с кинематики. Так называют раздел механики, в котором движение тел рассматривается без выяснения причин, его вызывающих. Начнём с равномерного движения.
Корабль `A` и торпеда `B` в некоторый момент времени находятся на расстоянии `l = 1 sf"км"` друг от друга (см. рис. 1). Скорость корабля `v_1 = 10 sf"м/с"`, угол `alpha = 60^@`. Скорость торпеды `v_2 = 20 sf"м/с"`. При каком угле `beta` торпеда попадёт в цель?
По условию цель и торпеда в лабораторной системе отсчёта движутся равномерно, их радиусы векторы зависят от времени по закону
`vecr_1 (t) = vecr_(01) + vecv_1 t`,
`vecr_2 (t) = vecr_(02) + vecv_2 t`
Перейдём в систему отсчёта, связанную с кораблём (точка `A`) и движущуюся поступательно относительно лаборатории. В этой системе положение торпеды (точки `B`) в любой момент времени определяется вектором
`vec rho (t) = vecr_(2)(t) - vecr_(1) (t) = (vecr_(02) - vecr_(01)) + (vecv_2 - vecv_1)t`.
Отсюда следует, что в подвижной системе торпеда движется по прямой, проходящей через её начальное положение, определяемое вектором `vecrho_0 = vecr_(02) - vecr_(01)`, а направляющим вектором прямой является относительная скорость `vec u = vecv_2 - vecv_1`. Такая прямая проходит через начало отсчёта подвижной системы (торпеда попадает в цель) в том случае, когда векторы `vecrho_0` и `vec u` антипараллельны. В рассматриваемой задаче это выполняется при равенстве проекций скоростей `vecv_1` и `vecv_2` на перпендикуляр к `vecrho_0`, т. е. к `AB`, `v_1 sin alpha = v_2 sin beta`.
Отсюда `sin beta = (v_1)/(v_2) sin alpha = (10)/(20) sin 60^@ = (sqrt3)/4 ~~ 0,43`, `beta ~~25,5^@`.
Обратимся к равнопеременному движению. Как известно, в этом случае зависимости скорости и перемещения от времени имеют вид
`vec v (t) = vecv_0 + vec a t`, `vec r (t) = vecr_0 + vecv_0 t + (vec a t^2)/2`.
Среди всевозможных случаев равнопеременного движения особое место занимает движение под действием гравитационных сил - свободное падение тел в однородном поле тяжести с постоянным ускорением `vec a = vec g`. Из второго соотношения следует, что при свободном падении вектор перемещения `vec r (t) - vec(r_0)` материальной точки за время от `0` до `t` равен сумме векторов `vecv_0 t` и `(vec g t^2)/2`. Это означает, что движение тела, брошенного под углом к горизонту, есть суперпозиция равномерного прямолинейного движения со скоростью `vecv_0` и свободного падения в однородном поле тяжести `vec g` с нулевой начальной скоростью.
Пушка расположена у основания склона, образующего с горизонтом угол `alpha = 30^@`. Под каким углом `beta` к склону следует произвести выстрел с начальной скоростью `v_0 = 100 sf"м/с"` так, чтобы дальность полёта снаряда вдоль склона была наибольшей? Найдите эту максимальную дальность `S_max`.
Здесь и далее в Задании ускорение свободного падения `g = 10 sf"м/с"^2`. Сопротивление воздуха пренебрежимо мало.
Перемещение снаряда за время `T` полёта равно
`vec r (T) = vecv_0 T + (vec g T^2)/2`,
(считаем `vecr_0 = vec 0`). Изобразим эти векторы на рисунке 2.
Проекции векторов `vecv_0 T` и `(vec g T^2)/2` на направление нормали к склону равны по величине
`v_0 T sin beta = (gT^2)/2 cos alpha`.
Отсюда находим продолжительность `T` полёта мяча `T = (2 v_0)/(g) (sin beta)/(cos alpha)`. Дальность `S` полёта равна алгебраической сумме проекций векторов `vecv_0 T` и `(vec g T^2)/2` на склон `S = v_0 T cos beta - (gT^2)/2 sin alpha`.
С учётом выражения для времени полёта последнее соотношение перепишем в виде
`S = (v_0^2)/(g cos^2 alpha) (sin (alpha + 2 beta) - sin alpha)`.
Отсюда следует, что наибольшей дальности соответствует такой угол `beta`, при котором множитель в скобках в последнем соотношении принимает наибольшее значение, т. е.
`sin (alpha + 2 beta) = 1`, `alpha + 2 beta = pi/2`, `beta = 1/2 (pi/2 - alpha) = 1/2 (pi/2 - pi/6 ) = pi/6`.
Отсюда следует, что выстрел следует производить по биссектрисе угла между склоном и вертикалью. В этом случае дальность полёта наибольшая и равна
`S_max = (v_0^2 (1 - sin alpha))/(g cos^2 alpha) ~~ 670 sf"м"`.
Камень брошен со скоростью `v_0 = 20 sf"м/с"` под углом `alpha = 60^@` к горизонту. Найдите радиус `R` кривизны траектории в окрестности точки старта. Через какое время `tau` после старта вектор скорости повернётся на `varphi = 1^@`?
Известно, что движение точки по окружности с постоянной по величине скоростью есть движение ускоренное, при этом вектор ускорения в любой момент времени направлен к центру окружности, а его величина постоянна и определяется, например, по одной из формул
`a_n = (v^2)/R = v omega = ((2pi)/(T))^2 R`.
Естественное обобщение этого результата для движения по произвольной криволинейной траектории состоит в следующем: неравномерное движении по произвольной криволинейной траектории может быть представлено как последовательность перемещений по элементарным дужкам окружностей, радиус каждой из которых можно вычислять по формуле `R = (v^2)/(a_n)`. Эту величину называют радиусом кривизны траектории в малой окрестности рассматриваемой точки.
Для решения задачи воспользуемся соотношениями `R = (v^2)/(a_n)`, `omega = (a_n)/v`.
В малой окрестности точки старта `v = v_0`, нормальное ускорение `a_n` есть проекция ускорения свободного падения `vec g` на нормаль к траектории (рис. 3)
`a_n = g * cos alpha`.
Из преведённых соотношений находим радиус кривизны траектории в малой окрестности точки старта
`R = (v_0^2)/(g cos alpha) = (20^2)/(10 * 0,5) = 80 sf"м"`,
и угловую скорость, с которой в этой окрестности вращается вектор скорости,
`omega = (g cos alpha)/(v_0)`.
Тогда время поворота вектора скорости на угол `varphi = pi/(180) ~~ 0,017` рад будет равно
`tau = varphi/omega = (varphi * v_0)/(g * cos alpha) = (0,017 * 20)/(10 * 0,5) ~~ 0,07 sf"с"`.
В основе динамики материальной точки лежат законы (аксиомы) Ньютона. Напомним ключевые определения и законы.
Система отсчёта, в которой любая материальная точка, не взаимодействующая с другими телами (такая точка называется свободной), движется равномерно и прямолинейно или покоится, называется инерциальной.
инерциальные системы отсчёта (ИСО) существуют
в ИСО приращение импульса материальной точки пропорционально силе и происходит по направлению силы:
`Delta vec p = vec F * Delta t`.
Импульсом (или количеством движения) материальной точки называют физическую величину, определяемую произведением её массы на вектор скорости в данной системе отсчёта:
`vec p = m * vec v`.
`vec F` - сумма сил, действующих на материальную точку. Величину `vec F * Delta t` называют импульсом силы за время от `t` до `t + Delta t`, в течение которого силу можно считать неизменной по величине и направлению. Величину `Delta vec p = vec p (t + Delta t) - vec p (t)` называют приращением импульса материальной точки за время от `t` до `t + Delta t`. Поэтому второй закон Ньютона для материальной точки можно сформулировать так:
в ИСО приращение импульса материальной точки равно импульсу силы.
Отметим, что при изучении динамики второй закон Ньютона часто формулируют следующим образом:
в ИСО ускорение материальной точки прямо пропорционально сумме сил, действующих на неё, и обратно пропорционально её массе:
`vec a = vec F/m`.
Действительно, если масса тела остаётся неизменной, то
`Delta vec p = Delta (m vec v) = m Delta vec v = vec F Delta t`.
С учётом равенства `vec a = (Delta vec v)/(Delta t)` приходим к эквивалентности приведённых формулировок второго закона.
Далее в Задании представлены задачи, иллюстрирующие применение законов Ньютона и их следствий: теорем об изменении импульса и энергии в механике.
при взаимодействии двух материальных точек сила `vecF_(12)`, действующая на первую материальную точку со стороны второй, равна по величине и противоположна по направлению силе `vecF_(21)`, действующей со стороны первой материальной точки на вторую:
`vecF_(12) = - vecF_(21)`.
1. силы возникают парами и имеют одинаковую природу, они приложены к разным материальным точкам,
2. эти силы равны по величине,
3. они действуют вдоль одной прямой в противоположных направлениях.
Заметим, что согласно третьему закону Ньютона обе силы должны быть равны по величине в любой момент времени независимо от движения взаимодействующих тел. Другими словами, если в системе двух взаимодействующих тел изменить положение одного из тел, то это изменение мгновенно скажется на другом теле, как бы далеко оно ни находилось. На самом деле скорость распространения взаимодействий конечная; она не может превзойти скорость света в вакууме. Поэтому третий закон Ньютона имеет определённые пределы применимости. Однако в классической механике при малых скоростях взаимодействующих тел он выполняется с большой точностью.
Второй закон Ньютона (уравнение движения) можно представить в виде теоремы об изменении импульса материальной точки:
`(Delta vec p)/(Delta t) = vec(F)`.
Скорость изменения импульса материальной точки в инерциальной системе отсчёта равна сумме сил, действующих на эту точку.
Напомним, что для решения задач динамики материальной точки следует:
привести «моментальную фотографию» движущегося тела, указать приложенные к нему силы;
выбрать инерциальную систему отсчёта,
привести «моментальную фотографию» движущегося тела, указать приложенные к нему силы,
составить уравнение динамики,
перейти к проекциям приращения импульса и сил на те или иные направления,
решить полученную систему.
Рассмотрим характерные примеры.
К телу, первоначально покоившемуся на шероховатой горизонтальной поверхности, прикладывают в течение времени `t_1 = 10 sf"с"` горизонтальную силу величиной `F = 5 sf"H"`. После прекращения действия силы тело движется до остановки `t_2 = 40 sf"с"`. Определите величину `F_sf"тр"` силы трения скольжения, считая её постоянной.
На рис. 4 показаны ИСО и силы, действующие на тело в процессе разгона. По второму закону Ньютона
`(Delta vec p)/(Delta t) = M vec g + vec N + vecF_("тр") + vec F`.
Переходя к проекциям на горизонтальную ось, находим элементарные приращения импульса в процессе разгона
`Delta p_x = (F - F_sf"тр" ) Delta t`
и в процессе торможения `(F = 0)`
`Delta p_x =- F_sf"тр" Delta t`.
Просуммируем все приращения импульса тела от старта до остановки
`sum Delta p_x = sum_(0 <= t <=t_1) (F - F_sf"тр" )Delta t + sum_(t_1 <= t <= t_1 + t_2) (- F_sf"тр") Delta t`.
Напомним, что для любой физической величины сумма приращений равна разности конечного и начального значений. Тогда
`p_(x sf"конечн") - p_(x sf"начальн") = (F - F_sf"тр") t_1 + (- F_sf"тр") t_2`.
С учётом равенств `p_(x sf"конечн") = 0`, и `p_(x sf"начальн") = 0` независимости сил от времени приходим к ответу на вопрос задачи:
`F_sf"тр" = (t_1)/(t_1 + t_2) F = (10)/(10 + 40) * 5 = 1 sf"H"`.
На ЕГЭ и олимпиадах в вузах РФ регулярно предлагаются задачи динамики, в которых наряду с привычными для школьника силой тяжести, силой Архимеда и т. д., на тело действует сила лобового сопротивления. Такая сила возникает, например, при движении тел в жидкостях и газах. Вопрос о движении тел в жидкостях и газах имеет большое практическое значение. Знакомство с действием такого рода сил уместно начинать, как это принято в физике, с простейших модельных зависимостей, в которых сила сопротивления принимается пропорциональной скорости или её квадрату.
Мяч, брошенный с горизонтальной поверхности земли под углом `alpha = 60^@` к горизонту со скоростью `v_0 = 10 sf"м/с"`, упал на землю. В момент падения скорость меньше начальной по величине на `delta = 0,3`. Найдите продолжительность `T` полёта мяча. Силу сопротивления считайте пропорциональной скорости `vec F =- k vec v`, `k > 0`.
Согласно второму закону Ньютона приращение импульса пропорционально силе и происходит по направлению силы
`m * Delta vec v = (m vec g - k vec v) * Delta t`,
переходя к проекциям сил и приращения скорости на вертикальную ось, получаем
`m * Delta v_y =- mg * Delta t - k * v_y * Delta t`.
Заметим, что элементарное перемещение мяча по вертикали равно `Delta y = v_y * Delta t`, и перепишем последнее соотношение в виде,
`m * Delta v_y =- mg * Delta t - k * Delta y`.
Просуммируем все приращения вертикальной проекции импульса по всему времени полёта, т. е. от `t = 0` до `t = T`
`m * (sum Delta v_y) =- mg * (sum Delta t) - k * (sum Delta y)`.
Переходя к конечным приращениям, получаем
`m (v_y (T) - v_y (0)) =- mg(T - 0) - k(y(T) - y (0))`.
Точки старта и финиша находятся в одной горизонтальной плоскости, поэтому перемещение мяча по вертикали за время полёта нулевое `y(T) - y(0) = 0`.
Тогда `- (1 - delta) mv_0 sin alpha - mv_0 sin alpha =- mgT`.
Отсюда находим продолжительность полёта мяча
`T = (v_0 sin alpha)/(g) (2 - delta) = (10 * sin 60^@)/(10) (2,0 - 0,3) ~~ 1,5 sf"с"`.
В следующем примере рассматривается удар, в ходе которого две очень большие силы, «согласованно» действуют во взаимно перпендикулярных направлениях
Кубик, движущийся поступательно со скоростью `v` (рис. 5) по гладкой горизонтальной поверхности, испытывает соударение с шероховатой вертикальной стенкой. Коэффициент трения скольжения кубика по стенке `mu` и угол `alpha` известны. Одна из граней кубика параллельна стенке. Под каким углом `beta` кубик отскочит от стенки? Считайте, что перпендикулярная стенке составляющая скорости кубика в результате соударения не изменяется по величине.
Силы, действующие на кубик в процессе соударения, показаны на рис. 6. По второму закону Ньютона
`Delta vec p = (m vec g + vec(N_sf"Г") + vec(F_sf"тр") + vec(N_sf"В")) * Delta t`.
Переходя к проекциям на горизонтальные оси `Ox` и `Oy`, получаем
`Delta p_x =- F_sf"тр" Delta t`, `Delta p_y = N_sf"В" Delta t`.
Просуммируем приращения `Delta p_y = N_sf"В" Delta t` по всему времени `tau` соударения, получим
`sum Delta p_y = p_y (tau) - p_y (0) = mv sin alpha - (- mv sin alpha) = sum_(0 <= t <= tau) N_sf"В" Delta t`.
В процессе удара в любой момент времени `F_sf"тр" = mu N_sf"В"`, следовательно, во столько же раз отличаются импульсы этих сил за время соударения
`sum_(0 <= t <= tau) F_sf"тр" Delta t = mu sum_(0 <= t <= tau) N_sf"В" Delta t = mu 2 mv sin alpha`.
Тогда легко вычислить проекцию `v_x (tau)` скорости кубика после соударения. Для этого просуммируем приращения `Delta p_x =- F_sf"тр" Delta t =- mu N_sf"В" Delta t` по всему времени `tau` соударения, получим
`sum Delta p_x = p_x (tau) - p_x (0) = mv_x (tau) - mv cos alpha =- sum_(0 <= t <= tau) F_sf"тр" Delta t =- mu 2 mv sin alpha`.
Отсюда `v_x (tau) = v (cos alpha - 2 mu sin alpha)`.
Далее считая, `v_x (tau) > 0`, получаем `bbb"tg" beta = (v_y (tau))/(v_x (tau)) = (sin alpha)/(cos alpha - 2 mu sin alpha)`.
Далее рассмотрим две характерные задачи динамики равномерного движения по окружности.
Массивный шарик, подвешенный на лёгкой нити, движется равномерно по окружности в горизонтальной плоскости. Расстояние от точки подвеса нити до плоскости, в которой происходит движение, равно `H`. Найдите период `T` обращения шарика.
Введём обозначения: `L` - длина нити, `alpha` - угол, образуемый нитью с вертикалью, `r = L sin alpha` - радиус окружности (рис. 7), по которой движется шарик со скоростью `v`.
Заметим, что `H = L cos alpha`. Обратимся к динамике. На шарик действуют сила тяжести `m vec g` и сила натяжения `vec F` нити. Эти силы сообщают шарику направленное к центру окружности нормальное ускорение, по величине равное `a = (4 pi^2)/(T^2) r`.
В инерциальной системе отсчёта основным уравнением динамики материальной точки является второй закон Ньютона `m vec a = vec F + m vec g`. При таком движении сумма сил, так же как и ускорение, в любой момент времени направлена к центру окружности. Тогда, переходя в уравнении движения к скалярной форме записи, удобно перейти не к проекциям сил и ускорения на оси `Ox`, `Oy` инерциальной системы отсчёта, а к проекциям сил и ускорения на два направления, а именно: на подвижное направление -направление внутренней нормали к траектории, считая положительным направление к центру окружности,
`m * (4 pi^2)/(T^2) r = F sin alpha`,
и на вертикаль `0 = F cos alpha - mg`.
Исключив из этих соотношений силу натяжения, приходим к ответу
`T = 2 pi sqrt(H/g)`.
Период обращения конического маятника зависит только от расстояния от точки подвеса до плоскости движения.
Маленький деревянный шарик прикреплён с помощью нерастяжимой нити длиной `l = 30 sf"см"` ко дну цилиндрического сосуда с водой. Расстояние от центра дна до точки закрепления нити `r = 20 sf"см"`. Сосуд раскручивают вокруг вертикальной оси, проходящей через центр дна. При какой угловой скорости вращения нить отклонится от вертикали на угол `alpha = 30^@`?
Нить с шариком отклонится к оси вращения. Действительно, на шарик будут действовать три силы: сила тяжести `m vec g`, сила натяжения `vec T` нити и сила Архимеда `vec F` (рис. 8).
Найдём эту силу. Обозначим объём шарика `V`, плотность дерева, из которого изготовлен шарик `rho_sf"ш"`, плотность воды `rho_sf"в"`, и рассмотрим движение жидкости до погружения в неё шарика. Любой элементарный объём воды равномерно движется по окружности в горизонтальной плоскости. Следовательно, вертикальная составляющая суммы сил давления (силы Архимеда) `F_(A,z)` уравновешивает силу тяжести, действующую на жидкость в рассматриваемом объёме, горизонтальная составляющая `F_(A,r)` сообщает этой жидкости центростремительное ускорение. При замещении жидкости шариком эти составляющие не изменяются. Тогда вертикальная составляющая силы Архимеда, действующей на шарик, по величине равна `F_(A,z) = rho_sf"в" Vg`, а направленная к оси вращения составляющая силы Архимеда по величине равна `F_(A,r) = rho_sf"в" V omega^2 (r - l sin alpha)`. Под действием приложенных сил шарик движется равномерно по окружности радиуса `(r - l sin alpha)` в горизонтальной плоскости. Из второго закона Ньютона `m vec a = m vec g + vec T + vec F`, переходя к проекциям сил и ускорения на вертикальную ось, находим
`rho _sf"в" Vg - rho_sf"ш" Vg - T cos alpha = 0`,
проектируя силы и ускорения в горизонтальной плоскости на нормальное направление, получаем
`rho _sf"ш" V omega^2 (r - l sin alpha) = rho_sf"в" V omega^2 (r - l sin alpha) - T sin alpha`.
Исключая `T` из двух последних соотношений, находим искомую угловую скорость
`omega = sqrt((g bbb"tg" alpha)/(r - l sin alpha)) ~~ 10,7 sf"с"^-1`.
Рассмотрим систему материальных точек массами `m_1`, `m_2``...`, движущихся в произвольной ИСО со скоростями `vecv_1`, `vecv_2``...`. Импульсом `vecP_("c")` системы материальных точек называют векторную сумму импульсов материальных точек, составляющих систему, `vecP_("c") = vecp_1 + vecp_2 + ...`.
Найдём скорость `(Delta vecP_("c"))/(Delta t)` изменения импульса системы материальных точек (ответ на такой вопрос для одной материальной точки нам известен). Для примера рассмотрим систему двух материальных точек. Будем считать, что на первую материальную точку действуют суммарной силой `vecF_1` внешние по отношению к системе тела и внутренняя сила `vecf_(12)` со стороны второго тела. В свою очередь, на вторую материальную точку действуют внешние по отношению к системе тела, сумма этих сил `vecF_2`, и внутренняя сила `vecf_(21)` со стороны первого тела. Тогда с учётом второго закона Ньютона для каждого тела получаем
`(Delta vecP_("c"))/(Delta t) = (Delta vecp_1)/(Delta t) + (Delta vecp_2)/(Delta t) = (vecF_1 + vecf_(12)) + (vecF_2 + vecf_(21))`.
По третьему закону Ньютона `vecf_(12) + vecf_(21) = vec 0`, и мы приходим к теореме об изменении импульса системы материальных точек
`(Delta vecP_("c"))/(Delta t) = vecF_1 + vecF_2`,
скорость изменения импульса системы материальных точек равна векторной сумме всех внешних сил, действующих на систему.
Из приведённого доказательства следует, что третий закон Ньютона можно сформулировать и как требование сохранения импульса системы взаимодействующих тел, если нет никаких других внешних сил. В этом - его более глубокое физическое содержание.
Клин массой `M` находится на шероховатой горизонтальной поверхности стола. На клин положили брусок массой `m` и отпустили. Брусок стал соскальзывать, а клин остался в покое. Коэффициент трения скольжения бруска по поверхности клина равен `mu`, наклонная плоскость клина составляет с горизонтом угол `alpha`. Найдите горизонтальную `R_1` и вертикальную `R_2` силы (рис. 9), с которыми клин действует на опору.
По третьему закону Ньютона искомые силы связаны с силой трения `vecR_1 =- vecF_("тр"` и силой нормальной реакции `vecR_2 =- vecN_("г")`, действующими на клин со стороны опоры (рис. 10). Силы `vec(F_sf"тр")` и `vec(N_sf"г")`, наряду с силами тяжести, являются внешними по отношению к системе «клин + брусок» и определяют скорость изменения импульса этой системы.
Импульс `vecP_("c")` системы направлен по скорости бруска и по величине равен произведению массы бруска на его скорость `vecP_("c") = vec p = m vec v (t)`. Для определения скорости изменения импульса `vec p` бруска обратимся ко второму закону Ньютона (рис. 11):
`(Delta vecp)/(Delta t) = m vec g + vec N + vec(f_sf"тр"`.
Переходя к проекциям приращений импульса бруска и сил на оси `Oy` и `Ox` с учётом соотношения `f_sf"тр" = mu N`, получаем
`(Delta p_y)/(Delta t) = 0 = N - mg cos alpha`, `(Delta p_x)/(Delta t) = mg(sin alpha - mu cos alpha)`.
По теореме об изменении импульса системы «клин + брусок»
`(Delta vecP_("c"))/(Delta t) = M vec g + m vec g + vecN_("г") + vecF_("тр")`.
Переходя в последнем равенстве к проекциям на горизонтальное и вертикальное направления с учётом
, ,
получаем
,
.
Отсюда находим искомые силы
`R_1 = F_sf"тр" = mg(sin alpha - mu cos alpha) cos alpha`,
`R_2 = N_sf"г" = (M + m) g - mg(sin alpha - mu cos alpha) sin alpha`.