16 статей
При решении уравнений этого вида очень многие школьники, прежде всего, находят ОДЗ: `f(x)>=0`, затем решают получившееся квадратное уравнение, проверяют после нахождения решений условие `f(x)>=0` и успокаиваются. Ответ может оказаться неверным. Почему? Потому что могут появиться “лишние” корни. Почему? Потому, что после возведения в квадрат решаются сразу два уравнения: и , но на разных промежутках числовой оси: – там, где `g(x)>=0`, и – там, где `g(x)<=0`. «Лишние» корни – это корни второго уравнения, геометрически это пересечение графика функции `y=g(x)` с графиком функции `y=-sqrt{f(x)}`.
Как быть?
Дело в том, что обе части любого уравнения всегда можно возвести в квадрат, но при этом может получиться неравносильное уравнение, а, значит, могут появиться посторонние корни. В нашем случае получится уравнение `f(x)=g^2(x)`, при этом очень важно, что ОДЗ уравнения выполняется автоматически – поэтому при таком способе решения не надо тратить энергию на решение неравенства `f(x)>=0`!
Заметим, что уравнение `sqrt{f(x)}=g(x)` может иметь решение для `g(x)>=0`, но не имеет решений, если `g(x)<0`.
Вспомним, что, если `f(x)>=0`, `g(x)>=0`. то `f(x)=g(x)hArrf^2(x)=g^2(x)`.
Так как уравнение `sqrt{f(x)}=g(x)` может иметь решение лишь при условии `g(x)>=0` (т. е. обе части в ОДЗ уравнения неотрицательны), то
(УРК1) |
Это очень важное условие равносильности.
Во-первых, оно освобождает от необходимости исследовать, а после нахождения решений и проверять условие `f(x)>=0` – неотрицательности подкоренного выражения, т. к. это условие выполняется автоматически.
Во-вторых, акцентирует внимание на проверке условия `g(x)>=0` неотрицательности правой части – это условие “отсекает” посторонние корни – корни уравнения `-sqrt{f(x)}=g(x)`. При этом сначала решается уравнение, а затем найденные корни подставляются в неравенство. Неравенство (за редким исключением, когда корни “плохие”) заранее решать не надо.
Наше условие равносильности особенно полезно при решении тригонометрических уравнений, в которых нахождение ОДЗ связано с решением тригонометрических неравенств, что гораздо сложнее, чем решение тригонометрических уравнений. Проверку в тригонометрических уравнениях даже условия `g(x)>=0` не всегда просто сделать.
При решении любых уравнений, где есть хотя бы один неравносильный переход, надо делать проверку, подставляя найденные корни в исходное уравнение!
Решите уравнение `sqrt{2x^2-8x+9}=x-1`.
`2`; `4`. В этом примере не оказалось лишних корней.
`sqrt{2x^3+2x^2-3x+3}=x+1`.
Видно, что важным при решении является условие `x+1>=0`,
а ОДЗ корня искать не надо, да и найти трудно.
Любопытно, что `x=-2` принадлежит ОДЗ корня `(-16+8+6+3>0)`, но не является решением, т. к. для него не выполнено условие `x+1>=0`.
`0,5; 1`.
В ОДЗ обе части неотрицательны, и возведение в квадрат даёт равносильное в ОДЗ уравнение `f(x)=g(x)`. Поэтому
(УРК2) |
Найдите сумму квадратов всех корней уравнения .
Решение
`25`.
При таком способе решения достаточно проверить неотрицательность одной из функций – можно выбрать более простую функцию.
При решении уравнений ОДЗ пишем, но не находим, т. к. решение неравенств, определяющих ОДЗ, часто требует даже больше усилий, чем решение самого уравнения. Поэтому не надо тратить на это время.
1. Если при решении уравнения использовались только равносильные преобразования, то найденные корни достаточно подставить в ОДЗ. Если они принадлежат ОДЗ, то являются решениями уравнения.
2. Если при решении уравнения не следить за равносильностью преобразований, то после нахождения корней надо сделать проверку. Можно сначала подставить их в ОДЗ – если они не принадлежат ОДЗ, то не являются решениями уравнения, но, если принадлежат ОДЗ, то это ещё не значит, что они являются решениями уравнения – их надо теперь подставить в само уравнение.
Это была рекомендация, полезная при решении большинства уравнений, но, конечно, бывают исключения, когда изучение ОДЗ сразу приводит к решению.
Это уравнение можно решать стандартным способом. Но иногда ответить на поставленный вопрос помогает график. Уметь строить эскизы левой и правой частей уравнения `sqrt{ax+b}=cx+d` очень полезно. Графическая интерпретация решения такого уравнения помогает быстро решить некоторые задачи ЕГЭ.
Какое утверждение
1) уравнение имеет два корня одного знака (оба корня или положительны, или отрицательны);
2) уравнение имеет только один корень, и он отрицателен;
3) уравнение имеет два корня разных знаков;
4) уравнение имеет только один корень, и он положителен;
верно по отношению к корням уравнения `sqrt{x+4}=3(x+1)`?
Для ответа на поставленный вопрос не обязательно решать уравнение. Часто достаточно аккуратно начертить эскизы левой и правой частей (рис. 8).
Рис. 8 |
На оси надо отметить точки пересечений полупараболы и прямой с осями координат. Из рисунка ясно, что пересечение графиков происходит на отрицательной полуоси – это обеспечивается тем, что прямая пересекает ось `Ox` правее, а ось `Oy` выше полупараболы.
`2`.
Одна из замечательных теорем геометрии, доказательство которой вам уже известно по учебнику, гласит: «сумма углов треугольника равна `180^@`». Как вы думаете, можно ли было установить этот факт экспериментально?
Рис. 1 | Рис. 2 |
Предположим, что мы будем измерять угол, равный сумме углов треугольника, транспортиром. Нарисуем некоторый треугольник, приложим транспортир к одному из углов – углу `1`, отметим его величину, затем приложим транспортир к другому углу (рис. 1), отметим величину суммы двух углов, затем приложим транспортир к третьему углу. Мы обнаружим, что третья отметка придётся на `180^@`. Следует ли из наших измерений, что сумма углов рассмотренного треугольника точно равна `180^@`? А может быть больше на `1//10` градуса или меньше на `2//15` градуса? Такую разницу, как бы тщательно мы ни проводили измерения с помощью транспортира, заметить невозможно.
Кроме того, любой нарисованный треугольник, можно сказать, имеет «дефект»: как бы тонок ни был карандаш, которым его рисовали, стороны треугольника, если рассмотреть рисунок в увеличительное стекло, предстанут перед нами широкими неровными полосами. Какой же угол мы измеряли? Поэтому сомнения в точности наших измерений ещё более возрастут, и вывод может быть сделан только такой: сумма углов треугольника на рис. 1 близка к .
Предположим, что аналогичные измерения мы провели в каждом из треугольников, изображённых на рис. 2, и получили такие же результаты. Тогда мы можем предположить, выдвинуть гипотезу, что в любом нарисованном треугольнике сумма углов близка к `180^@`. Но даже такую гипотезу проверить экспериментально не представляется возможным, т. к.пришлось бы провести измерения во всех разнообразных треугольниках, т. е. в бесконечном числе случаев, что, конечно, неосуществимо.
Мы привели эти рассуждения, чтобы обратить ваше внимание на следующие важные моменты. Попытки экспериментально установить свойства фигур неосуществимы по ряду причин: из-за бесконечного разнообразия видов фигур, из-за «дефектности» самих фигур и, наконец, из-за неизбежных ошибок измерения.
В науке геометрии рассматриваются не реальные, конкретные фигуры, вырезанные из картона, нарисованные на листе бумаги и т.п., а идеальные, как говорят, абстрактные фигуры, которые целиком описываются только своими определениями. Реальные треугольники имеют не только форму и размер, они могут быть сделаны из картона или жести, бумаги или дерева и т. п. Отвлекаясь от всех их свойств, кроме формы и размера, т. е. выделяя общее для всех таких фигур, приходят к представлению о геометрическом треугольнике как фигуре, которая состоит из трёх точек, не лежащих на одной прямой, и трёх отрезков, попарно соединяющих эти точки.
Только для абстрактных геометрических фигур удается установить ряд простых и важных свойств. Именно для абстрактных геометрических треугольников справедливо утверждение, что сумма углов в каждом из них равна `180^@`. Истинность этого утверждения, как и других утверждений, называемых теоремами, устанавливается методом строгих рассуждений, основанных на логике и вытекающих из ранее доказанных утверждений. Как вы сами убедились, эти рассуждения столь убедительны, что с ними соглашается всякий, рассмотревший их.
Метод строгих геометрических доказательств, основанных на логике, когда одно утверждение вытекает из ранее установленного, является основным методом в геометрии. В этом смысле геометрию называют дедуктивной наукой, от латинского слова deductio – выведение.
Если разобрать вывод, т. е. доказательство какой-нибудь геометрической теоремы, то он логически следует из ранее доказанных теорем. Для этих ранее доказанных теорем, в свою очередь, можно выделить те факты, из которых они выводятся и которые были установлены ранее.
Но ведь есть какое-то первое утверждение, которое не вытекает из ранее доказанного, так как вообще нет теорем, которые уже были доказаны до этого. Это означает, что некоторые факты должны быть приняты без доказательства. Их называют аксиомами, от греческого – удостоенное, принятое положение.
Так же обстоит дело с определениями геометрических объектов. Вводя новое определение, пользуются определениями и понятиями, которые уже были введены раньше. Но как быть с первым определением? Через что его определить, если еще нет понятий, определенных ранее? Отсюда следует, что некоторые геометрические понятия должны быть введены без каких-либо определений. Такие неопределяемые понятия называются основными. В изучаемом курсе геометрии таковы понятия точки, прямой, плоскости.
Итак, все здание геометрии строится, во-первых, на основных неопределяемых понятиях, и, во-вторых, на аксиомах, в которых устанавливаются связи и взаимоотношения между первоначальными понятиями; затем с помощью определений вводятся новые понятия, для которых, исходя из первоначальных фактов, содержащихся в аксиомах, доказываются, выводятся с помощью логики, дальнейшие факты – теоремы.
Подобное строение какой-нибудь области математики называют аксиоматическим. Таким образом, геометрия – аксиоматическая наука.
Из всего сказанного вывод такой: хотите освоить науку геометрию (хотя бы в рамках школьной программы) – разберите аксиомы, учите определения и формулировки теорем, с которыми вас постепенно знакомит учебник, наизусть, как стихи. А умение рассуждать, доказывать, умение применять теорию в решении задач приходят постепенно. Этому способствуют разбор доказательств теорем из учебника (за две с лишним тысячи лет математики отобрали самые лучшие и простые доказательства – именно их вам приводят в учебнике), разбор решений характерных задач, овладение методами решений.
Гипотеза – от греческого – под, внизу и – положение, утверждение – предположительное суждение о закономерной связи явлений.
Абстракция – от латинского abstractio – отвлечение.
Теорема – от греческого рассматриваю.
Для повторения мы выбрали эти темы. Приводить доказательство теорем, содержащихся в учебнике, не будем, лишь напомним основные теоремы. Также обсудим некоторые важные вопросы, приведём примеры решения задач, докажем несколько дополнительных теорем (Всякое утверждение, сформулированное в общем виде и доказанное, есть теорема, но их так много и они часто столь просты, что наполнять ими учебник не имеет смысла, а вот учиться на них применению основных теорем, умению рассуждать, делать выводы, - очень полезно). Такие теоремы мы будем называть леммами.
В учебнике доказаны три признака равенства треугольников.
Первый признак: по двум сторонам и углу между ними.
Второй признак: по стороне и прилежащим к ней углам.
Третий признак: по трём сторонам.
Мы напомнили их краткую формулировку.
Отметим также важный момент. Запись равенства треугольников $$ △ABC=△KPM$$ означает: $$ \angle A=\angle K$$, $$ \angle B=\angle P$$, $$ \angle C=\angle M$$, $$ AB=KP$$, $$ AC=KM$$ и $$ BC=PM$$, т. е. соответствующие вершины стоят на соответствующих местах.
Когда это удобно, будем использовать обозначения: в треугольнике $$ ABC$$ углы обозначать $$ A$$, $$ B$$ и $$ C$$,
$$ a$$, $$ b$$ и $$ c$$ – стороны, противолежащие углам $$ A$$, $$ B$$ и $$ C$$,
$$ {h}_{a}$$, $$ {h}_{b}$$, $$ {h}_{c}$$ – высоты к сторонам $$ a$$, $$ b$$ и $$ c$$,
$$ {m}_{a}$$, $$ {m}_{b}$$, $$ {m}_{c}$$ – медианы к сторонам $$ a$$, $$ b$$ и $$ c$$.
Покажем, как важно точно помнить формулировки теорем. Пусть треугольники $$ ABC$$ и `A^'B^'C^'` таковы, что `b^'=b`, `c^'=c` и `/_B^'=/_B`. Будут ли эти треугольники равны? Есть первый признак равенства «по двум сторонам и углу», но «углу между ними», а здесь какой угол? Нарисуем некоторый треугольник $$ ABC$$ (рис. 3) и отметим стороны и угол, о которых идёт речь: это не тот угол!
![]() |
||
Рис. 3 | Рис. 4 | Рис. 5 |
Приведём пример треугольника `A^'B^'C^'` (рис. 5), который не равен треугольнику $$ ABC$$ `(B^'C^'!=BC)`, хотя `c=c^'`, `b=b^'` и `/_B=/_B^'`.
Рисунок 4 поясняет, как треугольник `A^'B^'C^'` получается из треугольника $$ ABC$$.
Приведём ещё пример (рис. 6), который показывает, что слова «прилежащим к стороне» чрезвычайно важны в формулировке второго признака равенства треугольников.
Здесь $$ AB={A}_{1}{B}_{1}$$, $$ \angle C=\angle {A}_{1}=90°$$, $$ \angle B=\angle {B}_{1}=45°$$
Рис. 6 |
(Сторона одного треугольника равна стороне другого, два угла первого равны двум углам второго).
Но равные углы не прилежат к равным сторонам и `DeltaABC!=DeltaA_1B_1C_1`. Как легко видеть, треугольник $$ ABC$$ равен треугольнику $$ {A}_{1}{B}_{1}D$$ который составляет часть треугольника $$ {A}_{1}{B}_{1}{C}_{1}$$.
Треугольники $$ ABC$$ и `A^'B^'C^'` таковы, что равны их медианы, проведённые из вершин `B` и `B^'` и равны углы, которые образуют эти медианы со сторонами $$ a$$ и $$ c$$ и со сторонами `a^'` и `c^'` соответственно. Доказать, что `DeltaABC=DeltaA^'B^'C^'`.
Решение
При доказательстве мы рисуем треугольники, о которых идёт речь, в наиболее удобном положении (см. рис. 7), что возможно по аксиоме «перемещения треугольника», иначе называемой аксиомой «существования треугольника, равного данному».
Рис. 7 |
Итак, $$ AM=CM$$, `A^'M^'=C^'M^'`, `BM=B^'M^'` равные углы $$ ABM$$ и `A^'B^'M^'` обозначим $$ \alpha $$ вторую пару равных углов обозначим $$ \phi $$.
1. В треугольнике $$ ABC$$ продолжим медиану $$ BM$$ за точку $$ M$$ и на прямой $$ BM$$ отложим отрезок $$ MD=BM$$. Рассмотрим треугольники $$ ABM$$ и $$ CDM$$.
Имеем: $$ AM=CM$$ (т. к. `BM` – медиана),
$$ BM=DM$$ (по построению),
$$ \angle AMB=\angle CMD$$ (как вертикальные).
По первому признаку равенства треугольников $$ △ABM= △CDM$$ В равных треугольниках против равных углов лежат равные стороны $$ (AB=CD)$$ и против равных сторон лежат равные углы (поэтому $$ \angle CDM=\alpha $$).
Аналогичное построение осуществим с треугольником `A^'B^'C^'` получим, что `A^'B^'=C^'D^'` и `/_C^'D^'M^'=alpha`.
2. Теперь рассмотрим треугольники $$ BCD$$ и `B^'C^'D^'`. Так как `BD=B^'D^'` и прилежащие к отрезкам $$ BD$$ и `B^'D^'` углы соответственно равны $$ \phi $$ и $$ \alpha $$, то `Delta BCD=DeltaB^'C^'D^'` по второму признаку равенства. Из этого равенства следует `CD=C^'D^'` (т. е. `c=c^'`) и `BC=B^'C^'` (т. е. `a=a^'`).
3. Вновь рассматриваем треугольники $$ ABC$$ и `A^'B^'C^'` Угол при вершине $$ B$$ равен углу при вершине `B^'` и равны стороны, образующие этот угол. По первому признаку равенства `Delta ABC=Delta A^'B^'C^'`.
На сторонах $$ AB$$ и $$ AD$$ квадрата $$ ABCD$$ во вне его построены равносторонние треугольники $$ AKB$$ и $$ AMD$$ (рис. 8). Доказать, что треугольник $$ KCM$$ также равносторонний.
Решение
Обозначим сторону квадрата $$ a$$ очевидно, что стороны равносторонних треугольников тоже равны $$ a$$. Отметим равные стороны в треугольниках $$ KBC$$, $$ CDM$$ и $$ KAM$$.
Рис. 8 |
$$ △KBC=△CDM$$ по первому признаку, т. к. $$ \angle KBC=\angle CDM=90°+60°=150°$$.
Пусть прямая $$ CA$$ пересекает отрезок $$ KM$$ в точке $$ F$$.
$$ \angle KAC=\angle MAC=60°+45°=105°$$
Смежные с ними углы $$ KAF$$ и $$ MAF$$ равны $$ 180°-105°=75°$$ значит `/_RAM=150^@`, и $$ △KAM=△KBC$$ Делаем вывод: $$ KC=CM=KM$$ т. е. треугольник $$ KCM$$ – равносторонний.
(В решении использовано утверждение, что все углы равностороннего треугольника равны $$ 60°$$).
II. Равнобедренный треугольник.
В учебнике доказаны теоремы:
Т1. В равнобедренном треугольнике углы при основании равны.
Т2. В равнобедренном треугольнике медиана, проведённая к основанию, является высотой и биссектрисой.
Т3. (Признак равнобедренного треугольника). Если два угла в треугольнике равны, то он равнобедренный.
Обратим внимание, что признаком фигуры $$ A$$ называется теорема с формулировкой: «если имеет место … , то это фигура $$ A$$». Сформулируем следующие, часто применяемые в задачах, признаки равнобедренного треугольника:
а) если в треугольнике высота является медианой, то треугольник равнобедренный;
б) если в треугольнике высота является биссектрисой, то треугольник равнобедренный;
в) если в треугольнике медиана является биссектрисой, то треугольник равнобедренный.
Доказательство признака а) вполне простое. Если $$ BD\perp AC$$ и $$ AD=DC$$ (рис. 9), то $$ △ADB=△CDB$$ по двум сторонам ( $$ BD$$ – общая, $$ AD=DC$$) и углу между ними ($$ \angle ADB$$ смежный с $$ \angle BDC=90°$$ поэтому $$ \angle ADB=90°$$ ).
Из равенства треугольников следует $$ AB=BC$$ и треугольник $$ ABC$$ по определению равнобедренный.
Рис. 9 | Рис. 10 |
Доказательство признака б) Столь же простое, докажите его самостоятельно.
Докажем признак в) Пусть в треугольнике $$ ABC$$ биссектриса $$ BM$$ является медианой: $$ AM=MC$$ (рис. 10). На продолжении биссектрисы $$ BM$$ отложим отрезок $$ MD$$ равный $$ BM$$ Треугольники $$ ABM$$ и $$ CDM$$ равны по первому признаку: у них углы при вершине $$ M$$ равны, как вертикальные, и $$ AM=CM$$, $$ BM=DM$$ Из равенства треугольников следует
$$ CD=AB$$ (1)
и $$ \angle CDM=\angle ABM$$. Но $$ \angle ABM=\angle CBM$$ поэтому $$ \angle CDM=\angle CBM$$, т. е. в треугольнике $$ BCD$$ углы при основании $$ BD$$ равны. По признаку Т3 этот треугольник равнобедренный: $$ BC=CD$$ Отсюда и из (1) заключаем: $$ BC=AB$$. Утверждение доказано.
В следующем примере применяются признак параллельности прямых и две теоремы об углах треугольника (и следствия этих теорем):
Т. Сумма углов треугольника равна $$ 180°$$.
Т. Внешний угол треугольника равен сумме двух внутренних углов, не
смежных с ним.
Точка $$ K$$ лежит на основании $$ AC$$ равнобедренного треугольника $$ ABC$$ ($$ AB=BC$$). Через точку $$ K$$ проведена прямая, пересекающая прямую $$ AB$$ и отрезок $$ BC$$, при этом образовалось два равнобедренных треугольника (рис. 11).
Найти углы треугольника $$ ABC$$.
Решение
Обозначим точки пересечения $$ M$$ и $$ D$$.
1. Углы при основании равнобедренного треугольника равны и они острые, значит угол $$ MAK$$ – тупой.
2. В треугольнике может быть только один тупой угол, значит, если треугольник $$ MAK$$ равнобедренный, то равными могут быть только углы при вершинах $$ M$$ и $$ K$$. Обозначим их $$ \alpha $$.
3. $$ \angle BAK=2\alpha $$ (как внешний угол треугольника $$ MAK$$), $$ \angle BCA=2\alpha $$ (углы при основании равнобедренного треугольника равны) и $$ \angle DKC=\alpha $$ ($$ \angle DKC=\angle AKM$$ как вертикальные).
Расставим углы.
4. Треугольник $$ KDC$$ по условию равнобедренный. Возможны, вообще говоря, два случая: а) $$ \angle KDC=\alpha $$ и б) $$ \angle KDC=2\alpha $$.
а) Если $$ \angle KDC=\alpha $$, то накрест лежащие углы при секущей $$ MD$$ равны $$ \alpha $$; это по теореме означало бы параллельность прямых $$ MB$$ и $$ CB$$, что противоречит их пересечению. Этот случай невозможен.
б) Если $$ \angle KDC=2\alpha $$, то по теореме о сумме углов треугольника (для треугольника $$ KDC$$) $$ \alpha +2\alpha +2\alpha =180°$$ ,$$ \alpha =36°$$. Находим углы треугольника $$ ABC$$ :$$ \angle A=\angle C=2\alpha =72°$$ , $$ \angle B=180°-2·\angle A=36°$$.
III. Для прямоугольных треугольников справедливы признаки равенства (их надо уметь доказывать):
1. по двум катетам;
2. по гипотенузе и катету;
3. по гипотенузе и острому углу;
4. по катету и острому углу.
Применяя признаки равенства прямоугольных треугольников, докажем ещё один признак равнобедренного треугольника:
Доказать, что если две высоты треугольника равны, то он равнобедренный.
Решение
Пусть высоты $$ A{A}_{1}$$ и $$ C{C}_{1}$$ треугольника $$ ABC$$ равны друг другу.
1. (Треугольник остроугольный. Обе высоты внутри треугольника, (рис. 12а). Прямоугольные треугольники $$ A{A}_{1}B$$ и $$ C{C}_{1}B$$ равны по катету ($$ A{A}_{1}=C{C}_{1}$$) и противолежащему острому углу (угол $$ B$$ – общий). Тогда
равны их гипотенузы $$ AB=CB$$, а это и означает, что треугольник $$ ABC$$ равнобедренный.
Рис. 12a | Рис. 12б |
Рис. 12в |
2. (Треугольник тупоугольник, угол $$ В$$ тупой. Обе высоты вне треугольника, рис. 12б). Прямоугольные треугольники $$ A{A}_{1}B$$ и $$ C{C}_{1}B$$ имеют равные катеты $$ A{A}_{1}=C{C}_{1}$$ и равные противолежащие углы $$ \angle AB{A}_{1}=\angle CB{C}_{1}$$ как вертикальные . Треугольники равны, равны их гипотенузы $$ AB=CB$$. Треугольник $$ ABC$$ – равнобедренный.
3. Случай равенства двух высот равнобедренного треугольника, одна из которых внутри треугольника, другая – вне треугольника, невозможен. Действительно, если $$ B{B}_{1}=A{A}_{1}=h$$ (рис. 12в), то $$ △A{A}_{1}B=△B{B}_{1}A$$ по гипотенузе (у них общая $$ AB$$) и катету $$ A{A}_{1}=B{B}_{1}$$. Тогда $$ \angle BA{A}_{1}=\angle AB{B}_{1}$$ (обозначен $$ \alpha $$ ), т. е. накрест лежащие углы при секущей $$ AB$$ равны и прямые $$ A{A}_{1}$$ и $$ {B}_{1}B$$ параллельны, что неверно.
4. Если угол $$ B$$ – прямой, то высоты из вершин $$ A$$ и $$ C$$ совпадают с катетами $$ AB$$ и $$ CB$$.
При равных высотах равны и катеты, треугольник $$ ABC$$ – равнобедренный.
Доказать, что медиана прямоугольного треугольника, проведённая из вершины прямого угла, равна половине гипотенузы.
Решение
Рис. 13 |
Точка $$ M$$ – середина гипотенузы $$ AB$$ прямоугольного треугольника $$ ABC$$ (рис. 13). Проведём через точку $$ M$$ прямую $$ MK\perp AC$$.
Из $$ BC\perp AC$$ и $$ MK\perp AC$$ следует $$ BC\parallel MK$$.
Из параллельности прямых $$ BC$$ и $$ MK$$ и равенства отрезков $$ BM$$ и $$ MA$$ по теореме Фалеса следует $$ CK=KA$$.
В прямоугольных треугольниках $$ CMK$$ и $$ AMK$$ катет $$ MK$$ общий и, как установили, равны катеты $$ CK$$ и $$ AK$$. Эти треугольники равны, значит, равны и их гипотенузы, т. е. $$ CM=AM$$, или $$ CM={\displaystyle \frac{1}{2}}AB$$.
Дополнение. Для многих учащихся при решении задач возникает проблема: с чего начать? С рисунка! В геометрической задаче очень важен рисунок, он должен отвечать условиям задачи, быть наглядной формой их записи.
Рис. 14a | Рис. 14б |
Например, в задаче рассматривается равнобедренный треугольник. Его можно нарисовать по-разному (рис. 14а и 14б), поэтому сначала рисуют на черновике, от руки, и из других условий определяют вид треугольника.
Если сказано, что один отрезок в два раза длиннее другого, – отразите это на рисунке; если какие-то прямые параллельны – так и рисуйте, т. е. после таких рассмотрений делаете чёткий хороший рисунок, отвечающий условиям задачи.
Хороший рисунок – помощник в решении, особенно если на нём Вы отмечаете равные углы, перпендикулярность отрезков, отношение длин и т. п. и ставите данные задачи. Посмотрите, например, на рис. 7, 8, 11 и подумайте, как рисунок помогает в решении.
В треугольнике $$ ABC$$ медиана $$ BM$$ перпендикулярна биссектрисе $$ AD$$. Найти длину стороны $$ AB$$, если $$ AC=6$$.
Решение
△ 1. Подумаем, как построить рисунок. Возьмём луч $$ AK$$ (рис. 15) и отложим от точки $$ A$$ какие-то равные углы (т. е. считаем, что биссектриса $$ AD$$ лежит на этом луче).
Рис. 15 |
Выберем точку $$ B$$, проведём через точку $$ B$$ прямую, перпендикулярно $$ AK$$ и отметим точку $$ M$$, $$ BM$$ – медиана, поэтому отложим отрезок $$ MC=MA$$. Треугольник $$ ABC$$ – тот, что нужен: $$ AD$$ – биссектриса, $$ BM$$ – медиана, $$ AD\perp BM$$.
2. Решение очевидно: $$ △ABO=△AMO$$ (по катету и острому углу), значит $$ AB=AM$$ и $$ AC=2AM=2AB$$. Зная, что $$ AC=6$$, находим $$ AB=3$$.
Параллелограммом называется четырёхугольник, противолежащие стороны которого попарно параллельны (рис. 16). Параллелограмм – выпуклый четырёхугольник. В разных учебниках различные определения выпуклого четырёхугольника, приведём два равносильных определения:
1) Четырёхугольник называется выпуклым, если он лежит по одну сторону от любой прямой, содержащей его сторону.
2) Четырёхугольник называется выпуклым, если его диагонали пересекаются.
Равносильность доказывается на основе свойства полуплоскостей.
Легко доказывается теорема, что сумма углов выпуклого четырёхугольника равна `360^@` (повторите по учебнику).
Рис. 16
Свойства параллелограмма
Признаки параллелограмма
Докажем, например, признак 3.
Пусть в четырёхугольнике `ABCD` стороны удовлетворяют условиям `AB=DC` и `BC=AD` (рис. 17). Отметим соответственно равные стороны и проведём диагональ `AC`. `Delta ABC= Delta CDA` (`AB=CD`, `BC=AD`, `AC` - общая сторона). В равных треугольниках против равных сторон лежат равные углы: против `AB` - угол `1`, против `CD` - угол `2`, `/_ 1 = /_ 2` (накрест лежащие углы) . Против `BC` - угол `3`, против `AD` - угол `4`, `/_ 3 = /_ 4 =>` .
Противолежащие стороны попарно параллельны, значит параллелограмм по определению.
Свойства параллелограмма используются для доказательства замечательной теоремы о высотах треугольника.
Три высоты или три прямые, на которых лежат высоты треугольника, пересекаются в одной точке.
Через каждую вершину треугольника `ABC` (рис. 18) проведём прямую, параллельную противолежащей вершине стороне. Получаем треугольник `A_1 B_1 C_1`, к сторонам которого перпендикулярны высоты данного (например, если `AH _|_ BC`, то из , следует `AH_|_B_1 C_1`).
По построению , , - параллелограмм. Также показывается, что `AC_1BC` - параллелограмм. По свойству параллелограмма `BA_1 = AC`, `C_1 B = AC => C_1 B = BA_1`, т. е. точка `B` - середина стороны `A_1 C_1`. Повторяя рассуждение, устанавливаем, что точка `A` - середина стороны `B_1 C_1` и точка `C` - середина стороны `A_1 B_1`.
Прямые, на которых лежат высоты `AH`, `BF` и `CK` треугольника `ABC`, перпендикулярны к сторонам треугольника `A_1 B_1 C_1` и проходят через их середины, а три серединных перпендикуляра к сторонам треугольника пересекаются в одной точке (определяют центр окружности, описанной около треугольника `A_1 B_1 C_1`). Значит три прямые, на которых лежат высоты, пересекаются в одной точке.
Если треугольник остроугольный, то пересекаются сами высоты.
Если в треугольнике `ABC` углы `A` и `C` - острые (рис. 19), то вершина `B` лежит в полосе между двумя параллельными прямыми `l_1` и `l_2`, которые проходят через точки `A` и `C` и перпендикулярны `AC`. Отсюда следует, что основание `F` её высоты `BF` лежит на стороне `AC`. Если угол `B` - также острый (т. е. треугольник `ABC` - остроугольный), то основание `H` высоты `AH` тоже лежит на стороне `BC` (рассуждения те же самые). Точки `B` и `F` лежат в разных полуплоскостях, образованных прямой `AH`, значит отрезок `BF` пересекает прямую `AH`. Точка пересечения `O` лежит на `BF`, т. е. лежит внутри треугольника, и, значит, на отрезке `AH`. По теореме третья высота пройдёт через ту же точку `O`.
Биссектриса угла `A` параллелограмма `ABCD` пересекает сторону `CD` в точке `K`, а продолжение стороны `BC` в точке `F` (рис. 20). Найти стороны параллелограмма, если `BF = 16` и `CK =5`.
`AF` - биссектриса угла `BAD`, . Прямые `AD` и `BF` - параллельны, поэтому (как накрест лежащие), тогда `/_2 = /_3`, треугольник `ABF` -равнобедренный, `AB=BF`. Значит `AB =16`.
По свойству параллелограмма `CD=AB`, значит `CD=16` и `DK=11`. Далее, из следует `/_2 = /_4` (накрест лежащие), значит `/_4=/_1`, треугольник `ADK` - равнобедренный, `AD=DK=11`.
`AD=BC=11`, `AB=CD=16`.
Дана окружность с диаметром `AB` и точка `M`, лежащая внутри окружности, но не на диаметре (рис. 21). С помощью односторонней линейки опустить из точки `M` перпендикуляр на прямую `AB`.
( – уменьшенная копия односторонней линейки).
Что мы можем делать с помощью односторонней линейки? Проводить прямые! Вот и проведём через точки `A` и `M` прямую до пересечения с окружностью в точке `A_1`, затем через точки `B` и `M` проведём прямую до пересечения с окружностью в точке `B_1` (рис. 21).
Далее, проведём прямую через точки `A` и `B_1` и прямую через точки `B` и `A_1` - получим в их пересечении точку `C`. Прямая `CM` - искомая. В треугольнике `ACB` высоты `A A_1` и `B B_1` (углы `A A_1 C` и `B B_1 C` - прямые, опираются на диаметр) пересекаются в точке `M`. Точка `M` - точка пересечение высот треугольника `ACB`, значит `C C_1 _|_ AB`.
Если точка `M` лежит вне окружности и не на прямой `AB`, решение задачи усложняется, но немного (попробуйте сами).
Параллелограмм, в котором все углы прямые, называется прямоугольником.
Верна теорема: диагонали прямоугольника равны.
Верна и обратная теорема - признак прямоугольника: если диагонали параллелограмма равны, то этот параллелограмм - прямоугольник.
Параллелограмм, у которого все стороны равны, называется ромбом. Сформулируйте сами две теоремы о диагоналях ромба и обратные к ним.
Прямоугольник, у которого все стороны равны, называется квадратом. Квадрат - правильный четырёхугольник.
Через середину диагонали `BD` прямоугольника `ABCD` проведена перпендикулярно этой диагонали прямая, пересекающая сторону `BC` в точке `F` и сторону `AD` в точке `E`. Известно, что `EF = ED = 8`. Найти большую сторону прямоугольника.
Середина диагонали `BD` - точка `O`, - есть центр прямоугольника, `BO=OD` (рис. 22). Отрезок `EF` делится точкой `O` пополам, действительно, `Delta BOF = Delta DOE` (углы при точке `O` равны как вертикальные, `/_DBF = /_BDE` (как накрест лежащие при параллельных прямых `BC` и `AD`) и `BO=OD`; треугольники равны по второму признаку равенства).
Значит `FO=EO=1/2 EF=4` и `BF=ED=8`.
Треугольник `BOF` - прямоугольный, гипотенуза `BF=8`, катет `OF=4`, значит `/_OBF =30^@`.
Диагонали прямоугольника равны, равны и их половины, `BO=OC`. Треугольник `BOC` - равнобедренный, `/_BCO=30^@`, `/_CFO=180^@ - /_OFB =180^@ - 60^@ = 120^@`,
следовательно `/_FOC = 30^@`. Треугольник `OFC` - равнобедренный, `FC=OF=4`, значит `BC=12`.
`12`.
Окружность, построенная как на диаметре, на стороне `AD` параллелограмма `ABCD` касается стороны `BC` и проходит через середину стороны `AB` (рис. 23). Найти углы параллелограмма.
Пусть `O` - центр окружности и `R` - её радиус. Если `P` - точка касания стороны `BC`, то `OP_|_ BC`, а из следует `OP_|_AD`. Это означает, что расстояние между параллельными прямыми `AD` и `BC` равно `R`.
Точка `M` лежит на окружности, `OM=R`. Точка `M` - середина стороны `AB`. Если `MF _|_ AD` и `MK _|_ BC`, то точки `K`, `M` и `F` лежат на одной прямой (т. к. ) и поэтому `KF=PO=R`. Прямоугольные треугольники `AMF` и `BMK` равны (по гипотенузе и острому углу) и `MF=1/2 KF = 1/2 R`.
Из треугольника `OMF`, в котором `MF_|_OF`, `OM=R` и `MF= R/2` следует, что `/_MOF = 30^@`.
Далее заметим, что треугольник `AOM` равнобедренный `(OA=OM=R)`,
угол при вершине `O` равен `30^@`, следовательно `/_OAM = /_ AMO = 75^@`.
Итак, острый угол `A` параллелограмма равен `75^@`, а тупой угол `B` равен `105^@`.
`75^@` и `105^@`.
1. Как измерить с помощью одной мерной линейки, произведя одно измерение, диагональ кирпича (крпич имеет форму прямоугольного параллелепипеда, изображённого на рис. 24, его диагональ - это отрезок, соединяющий проивоположные вершины (например, `A` и `B`)). Дайте способ простой, практичный, пригодный для мастерской, стройки, без приминения вычислений по теореме Пифагора.
2. Тяжёлая балка `AB` лежит на брёвнах (рис. 25), её правый конец отстоит от оси последнего бревна на `5` м (`BC=5` м). На сколько продвинется вперёд передняя часть балки (точка `A`), если точка `B` достигент оси последнего бравна? Считать брёвна одинаоковыми и круглыми; катятся брёвна без скольжения.
3. Нетрудно показать, что у правильно пятиугольной звезды сумма углов равна `180^@`. Показать, что такая же сумма углов будет у произвольной пятиугольной звезды (рис. 26).
4. Во времена частных междоусобных войн один правитель захотел построить крепость-замок из `10` башен, соединённых между собой стенами, причём стены должны тянуться прямыми линиями с четырьмя башнями в каждой из них. Приглашённый им известный строитель представил ему план крепости (см. рис. 27), но правитель нашёл его совершенно неудовлетворительным: при таком расположении к любой из десяти башен можно подойти извне. Правителю же хотелось, чтобы по крайней мере одна башня (а ещё лучше - две) была бы со всех сторон защищена стеной от вторжения извне. Долго строитель ломал голову над такой задачей, но решил её и с одной безопасной башней, и с двумя безопасными башнями.
Попробуйте и вы найти решение.
5. Можно ли покрыть костяшками домино (каждая костяшка – две клетки) доску `8` x `8` клеток с двумя вырезанными противоположными клетками (рис. 28)?
6. Три одинаковых треугольника разрезали по медианам (рис. 29). Сложите из полученных `6` кусков один треугольник.
7. На рис. 30 изображена фигура, составленная из пяти квадратов. Требуется провести два разреза по прямым линиям так, чтобы из полученных частей можно было бы составить квадрат.
8. Найти площадь треугольника, изображённого на клетчатой бумаге (см. рис. 31), считать площадь каждой клетки равной `1`.
9. На окружности расположено `2000` чёрных точек и одна белая точка. Рассматриваются всевозможные выпуклые многоугольники с вершинами в этих точках. Каких многоугольников больше: тех, у которых все вершины чёрные, или тех, у которых одна вершина белая?
10. Можно ли, начав движение в какой-то точке контура обойти все его звенья, проходя по каждому ровно `1` раз, и вернуться в исходную точку? (контуры `1`-`6` на рис. 32)
11. Какое наибольшее число острых углов может иметь выпуклый `n` - угольник?
В контрольных вопросах и задачах проверяются Ваши знания основного курса и знакомство с материалом нашего задания.
1. Контрольные вопросы и задачи могут быть не только по темам, повторенным в этом Задании (повторить весь учебник невозможно), но и по материалу, изученному Вами в школе. При ответе на некоторые вопросы придётся открыть учебник.
2. Ответы на контрольные вопросы надо давать обоснованные. Приведём примеры.
Точки `K` и `L` делят диагональ `AC` параллелограмма `ABCD` на три равные части: `AK=KL=LC` (рис. 33). Верно ли, что прямые `BK` и `LD` параллельны?
Да, верно. Докажем это.
а) Проведём диагональ `BD`. По теореме диагонали параллелограмма пересекаются и точкой пересечения делятся пополам: `AO=OC` и `BO=OD`.
б) Из `AO = OC` и `AK=CL` следует `KO=OL`.
в) `Delta BOK = Delta DOL`, так как `KO=OL`, `BO=OD` и `/_BOK = /_ DOL` (как вертикальные).
Из равенства треугольников следует `/_ 1 = /_ 2`. Накрест лежащие углы при секущей `AC` равны, следовательно, .
В четырёхугольнике `ABCD` стороны `AB` и `CD` равны друг другу, а стороны `AD` и `BC` параллельны. Является ли четырёхугольник `ABCD` параллелограммом?
Нет, например, четырёхугольник `ABCD` на рисунке 34 удовлетворяет этим условиям, но противоположные стороны `AB` и `CD` не параллельны (этот четырёхугольник - равнобокая трапеция).
В первом задании мы рассмотрели линейные уравнения с одной переменной. Например, уравнения `2x+5=0`, `3x+(8x-1)+9=0` являются линейными уравнениями с переменной `x`. Уравнение, содержащее переменные `x` и `y`, называется уравнением с двумя переменными. Например, уравнения `2x-3=5`, `x^2+xy-y^2=7` являются уравнениями с двумя переменными.
Уравнение вида `ax+by=c` называется линейным уравнением с двумя переменными, где `x` и `y` переменные, `a`, `b`, `c` - некоторые числа.
Например, уравнения `2x+y=3`, `x-y=0` являются линейными уравнениями с двумя переменными.
Решением уравнения с двумя переменными называется пара значений переменных, обращающая это уравнение в верное равенство.
Например, `x=3`, `y=4` является решением уравнения `2x+3y=18`, будем эту пару чисел записывать так `(3;4)`. Очевидно, что пара чисел `(4;3)` не является решением уравнения, т. к. `2*4+3*3=17!=18`. При нахождении решений с двумя переменными на первом месте в паре чисел пишем значение для переменной `x`, а на втором месте – значение переменной `y`.
Если каждое решение одного уравнения является решением второго уравнения и обратно, то данные уравнения называются равносильными. Например, решения уравнений `2x+y=3` и `4x+2y=6` совпадают, следовательно, эти уравнения равносильные.
1) если в уравнении перенести слагаемое из одной части в другую, изменив его знак, то получится уравнение, равносильное данному;
2) если обе части уравнения умножить или разделить на одно и то же отличное от нуля число, то получим уравнение, равносильное данному.
Укажите три различных решения для уравнения `3x+y-2=0`.
Если `x=0`, то `y=2`; если `y=0`, то `x=2/3`; если `x=1`, то `y=-1`.
Таким образом, пары чисел `(0;2)`, `(2/3;0)`, `(1;-1)` являются решениями данного уравнения. Заметим, что данное уравнение имеет бесконечно много решений. Для заданного значения `x` значение `y=2-3x`, т. е. любая пара чисел `(x;2-3x)`, где `x` - любое число, является решением уравнения.
Рассмотрим координатную плоскость `Oxy` и отметим на ней все точки `(x,y)`, для которых пара чисел `x` и `y` является решениями уравнения. Например, рассмотрим уравнение `y=2`. Этому уравнению удовлетворяют все пары чисел `(x;2)`.Точки, для которых `x` - любое число, а `y=2`, лежат на прямой `y=2`. Эта прямая параллельна оси `x` и проходит через точку `(0;2)` (см. рис. 1).
Рассмотрим уравнение `x=3`. Каждая пара чисел, являющаяся решением данного уравнения, изображается точкой с координатами `x` и `y` на координатной плоскости `Oxy`. Решениями данного уравнения являются пары чисел `(3;y)`. Точки с координатами `x=3` и `y` лежат на прямой `x=3`, эта прямая параллельна оси `Oy` и проходит через точку `(3;0)` (см. рис. 2).
Графиком уравнения с двумя переменными называется множество всех точек координатной плоскости, координаты которых являются решениями данного уравнения.
На рис. 1 графиком уравнения является прямая `y=2`, на рис. 2 графиком уравнения является прямая `x=3`.
Рассмотрим теперь уравнение `2x+3y-1=0`. Выразим переменную `y` через `x`, получаем `y=1/3-2/3x`, это уравнение задаёт линейную функцию, и нам известно, что её графиком является прямая. Чтобы построить эту прямую, достаточно рассмотреть две точки, координаты которых удовлетворяют уравнению, а затем через эти две точки провести прямую. При `x=0` `y=1/3` и при `x=1/2` `y=0`. График данного уравнения приведён на рис. 3.
Рассмотрим уравнение `(x-4)(x+y-4)=0`. Произведение двух скобок равно нулю, каждая скобка может равняться нулю. Наше уравнение распадётся на два уравнения: `x=4` и `x+y-4=0`. Графиком первого уравнения является прямая, параллельная оси `Oy` и проходящая через точку `(4;0)`. Графиком второго уравнения является график линейной функции `y=4-x`, эта прямая проходит через точки `(4;0)` и `(0;4)`. График данного уравнения приведён на рис. 4.
Постройте график уравнения `|x|+|y|=1`.
Этот пример можно решать двумя способами. Пусть `x>=0` и `y>=0`, точки с такими координатами лежат в первой четверти. Получаем уравнение `x+y=1`, так как `|x|=x` и `|y|=y`. Графиком данного уравнения является прямая, проходящая через точки `A(1;0)` и `B(0;1)`. Графику исходного уравнения принадлежат точки полученной прямой, лежащие в первой четверти, т. е. графику принадлежат точки отрезка `AB`, где `A(1;0)` и `B(0;1)`.
Пусть теперь `x<=0` и `y>=0` тогда получаем уравнение `-x+y=1`, рассматриваем точки полученной прямой, лежащие во второй четверти. Это будет отрезок `BC`, где `C(-1;0)`. При `x<=0`, `y<=0` получим отрезок `CD` где `D(0;-1)`, и при `>=0`, `y<=0` получим отрезок `DA`. Таким образом, график данного уравнения состоит из точек квадрата `ABCD` (рис. 5).
Этот пример можно решать другим способом. Пусть `y>=0`, тогда наше уравнение эквивалентно уравнению `y=1-|x|`. В первом задании мы строили график функции `y=|x|` (см. рис. 6). График функции `y=-|x|` получается зеркальным отражением относительно оси `Ox` графика функции `y=|x|` (см. рис. 7). График функции `y=1-|x|` получается из графика функции `y=-|x|` сдвигом вдоль оси `Oy` на единицу вверх (см. рис. 8). У полученного графика рассматриваем только точки, для которых `y>=0`. Получим ломаную `ABC` с рис. 5.
Далее рассматриваем `y<=0`, получим, что графиком уравнения при `y<=0` является ломаная `CDA` с рис. 5. В итоге получим квадрат `ABCD` с рис. 5.
Найдите все решения уравнения `xy=6`, для которых `x` и `y` являются натуральными числами.
Очевидно, что натуральные числа `x` и `y` являются делителями числа `6`. Поэтому `x` и `y` могут принимать значения `1;` `2;` `3;` `6`. Следовательно, искомыми решениями являются числа `(1;6)`, `(2;3)`, `(3;2)`, `(6;1)`.
Найти все решения уравнения `x^2+4x=y^2+2y+8`, для которых значения `x` и `y` являются целыми числами.
Обычно такие примеры формулируют так: найти все решения данного уравнения в целых числах.
Преобразуем данное уравнение: `x^2+4x+4-4=y^2+2y+1+7`,
`(x+2)^2=(y+1)^2+11`,
`(x+2)^2-(y+1)^2=11`,
`(x+2-y-1)*(x+2+y+1)=11`.
Если `x` и `y` целые числа, то выражения, стоящие в скобках, являются целыми числами. А это могут быть числа `+-1` и `+-11`. Решаем `4` системы уравнений:
$$ \left\{\begin{array}{l}x+2-y-1=1,\\ x+2+y+1=11;\end{array}\right.$$
$$ \left\{\begin{array}{l}x+2-y-1=11,\\ x+2+y+1=1;\end{array}\right.$$
$$ \left\{\begin{array}{l}x+2-y-1=-1,\\ x+2+y+1=-11;\end{array}\right.$$
$$ \left\{\begin{array}{l}x+2-y-1=-11,\\ x+2+y+1=-1.\end{array}\right.$$
Решая эти системы, получаем `4` решения: `(4;4)`, `(4;-6)`, `(-8;-6)`, `(-8;4)`.
Решение многих задач сводится к решению систем линейных уравнений.
Системой двух линейных уравнений с двумя неизвестными `x` и `y` называется система уравнений вида
$$ \left\{\begin{array}{l}{a}_{1}x+{b}_{1}y={c}_{1},\\ {a}_{2}x+{b}_{2}y={c}_{2},\end{array}\right.$$
где `a_1`, `b_1`, `c_1`, `a_2`, `b_2`, `c_2` - некоторые числа.
Решением системы уравнений с двумя переменными называется пара значений переменных, обращающая каждое уравнение в верное числовое равенство.
Например, пара чисел `(2;3)` является решением системы уравнений
$$ \left\{\begin{array}{l}2x+3y=13,\\ x+5y=17,\end{array}\right.$$
а пара чисел `(1;1)` не является решением системы, т. к. эта пара не является решением каждого из уравнений системы.
Обозначим множество решений первого уравнения буквой `A`, а множество решений второго уравнения - `B`. Множество решений системы этих уравнений составляет пересечение множеств `A` и `B` (рис. 9). При этом возможны случаи, когда пересечение двух множеств является пустым (рис. 10) или совпадает с каждым из множеств `A` и `B` (рис. 11).
Графиком линейного уравнения `ax+by=c`, где `a^2+b^2>0`, является прямая. Следовательно, решение системы линейных уравнений с двумя неизвестными для указанного случая сводится к нахождению на координатной плоскости общих точек двух прямых линий. А две прямые на плоскости могут:
1) пересекаться, т. е. иметь единственную общую точку;
2) быть параллельными, т. е. не иметь общих точек;
3) совпадать, т. е. иметь бесконечно много общих точек.
Значит, система двух линейных уравнений с двумя неизвестными может либо иметь единственное решение, либо вообще не иметь решения, либо иметь бесконечное множество решений.
Сколько решений имеет система уравнений
$$ \left\{\begin{array}{l}2y+3x=8,\\ y-x=-1?\end{array}\right.$$
Запишем первое уравнение системы в виде `y=-3/2x+4`, а второе уравнение системы в виде `y=x-1`. Мы получили две линейные функции, графиками которых являются прямые с разными угловыми коэффициентами у первой `k_1=-3/2`, а у второй `k_2=1`. Вам известно, что такие прямые пересекаются в одной точке. Чтобы найти координаты точки пересечения прямых, приравняем значения для `y`. Получаем
`-3/2x+4=x-1`, `-3/2x-x=-4-1`, `-5/2x=-5`, `x=2`,
тогда `y=2-1=1`.
Таким образом, система имеет единственное решение `(2;1)`.
Решите систему уравнений
$$ \left\{\begin{array}{l}2x+y=5,\\ 4x+2y=10.\end{array}\right.$$
Из первого уравнения следует, что `y=5-2x`, а из второго уравнения получим `y=5-2x`. Графики этих уравнений совпадают. Уравнению удовлетворяет любая пара чисел `(x,5-2x)`, где `x` любое число, а `y=5-2x`. Система уравнений имеет бесконечно много решений.
Решите систему уравнений
$$ \left\{\begin{array}{l}x+y=7,\\ 2x+2y=10.\end{array}\right.$$
Запишем первое уравнение системы в виде `y=-x+7` и второе уравнение системы в виде `y=-x+5`. Графиками этих уравнений являются две параллельные прямые, которые не пересекаются, т. к. `-x+7=-x+5`, `x*0=-2`, а это уравнение не имеет решений.
При решении систем применяют метод подстановки, метод сложения и метод введения новых переменных.
Алгоритм решения системы двух линейных уравнений с двумя
неизвестными способом подстановки
1. В одном из уравнений выразить одно неизвестное через другое.
2. Подставить вместо этого неизвестного полученное выражение в другое уравнение системы.
3. Решить полученное во втором пункте уравнение с одним неизвестным.
4. Воспользовавшись найденным значением одного неизвестного, вычислить значение второго неизвестного.
5. Записать ответ.
Покажем на конкретном примере, как применяется метод подстановки.
Решите систему уравнений
$$ \left\{\begin{array}{l}2x+y=4,\\ 5x+3y=11.\end{array}\right.$$
Из первого уравнения выражаем `y=4-2x`, и это значение для `y` подставляем во второе уравнение системы, получаем:
`5x+3(4-2x)=11`, `5x+12-6x=11`, `-x=-1`, `x=1`.
Подставляем это значение `x` в выражение для `y`, получаем: `y=4-2=2`. Пара чисел `(1;2)` является единственным решением системы уравнений.
Алгоритм решения системы двух линейных уравнений с двумя
неизвестными способом алгебраического сложения
1. Умножить или разделить одно (или оба) уравнения системы на некоторое число, не равное 0, так, чтобы коэффициенты при одном из неизвестных в обоих уравнениях стали противоположными числами (или совпали).
2. Сложить (вычесть) уравнения.
3. Решить полученное во втором пункте уравнение с одним неизвестным.
4. Воспользовавшись найденными значениями одного неизвестного, вычислить значение второго неизвестного.
5. Записать ответ.
Теперь приведём пример, где применяется метод сложения.
Решите систему уравнений
$$ \left\{\begin{array}{l}3x-2y=5,\\ 2x+2y=10.\end{array}\right.$$
В этих уравнениях коэффициенты при переменной `y` отличаются знаком. Сложив уравнения системы, получаем
`3x-2y+2x+2y=5+10`, `5x=15`, `x=3`.
Подставляем найденное значение `x`, например, в первое уравнение системы, получаем:
`3*3-2y=5`, `-2y=-4`, `y=2`.
Система имеет единственное решение `(3;2)`.
Решите систему уравнений
$$ \left\{\begin{array}{l}4x+3y=11,\\ 3x+7y=13.\end{array}\right.$$
Сделаем коэффициенты при $$ x$$ обоих уравнений противоположными числами, для этого умножим обе части первого уравнения на `3` и обе части второго уравнения на `(-4)`, получим систему
$$ \left\{\begin{array}{l}12x+9y=33,\\ -12x-28y=-52.\end{array}\right.$$
Сложим уравнения системы:
`12x+9y-12x-28y=33-52`, `-19y=-19`, `y=1`.
Подставляем это значение для `y` в первое уравнение системы, получаем:
`12x+9=33`, `12x=24`, `x=2`.
Пара чисел `(2;1)` является единственным решением системы.
Метод введения новых переменных позволяет упростить вид системы.
Покажем на конкретном примере, как применяется метод введения новых переменных.
Решите систему уравнений
$$ \left\{\begin{array}{l}{\displaystyle \frac{1}{2x-y}}+{\displaystyle \frac{9}{3x+y}}=2,\\ {\displaystyle \frac{7}{2x-y}}-{\displaystyle \frac{18}{3x+y}}=5.\end{array}\right.$$
Введём новые переменные: `u=1/(2x-y)`, `v=1/(3x+y)`.
Для переменных `u` и `v` получим систему уравнений
$$ \left\{\begin{array}{l}u+9v=2,\\ 7u-18v=5.\end{array}\right.$$
Умножим обе части первого уравнения на `2`, получим систему
$$ \left\{\begin{array}{l}2u+18v=4,\\ 7u-18v=5.\end{array}\right.$$
Сложим уравнения системы, получим `9u=9`, `u=1`. Из первого уравнения при `u=1` следует, что `v=1/9`.
Из условия `1/(2x-y)=1` следует, что `2x-y=1`, а из условия `1/(3x+y)=1/9` следует, что `3x+y=9`. Решаем систему уравнений
$$ \left\{\begin{array}{l}2x-y=1,\\ 3x+y=9.\end{array}\right.$$
Сложим уравнения системы: `5x=10`, `x=2`, из первого уравнения получаем `4-y=1`, `y=3`.
`(2;3)`.
Мы рассмотрели системы двух уравнений с двумя неизвестными, теперь рассмотрим систему из трёх уравнений с тремя неизвестными.
С помощью способа сложения сводим систему трёх уравнений с тремя неизвестными к системе двух уравнений с двумя неизвестными. Покажем это на примере.
Решите систему уравнений
$$ \left\{\begin{array}{l}10x-5y-3z=-9,\\ 6x+4y-5z=-1,\\ 3x-4y-6z=-23.\end{array}\right.$$
Уравняем коэффициенты при `x` в первом и втором уравнениях, для этого умножим обе части первого уравнения на `3`, а второго уравнения – на `5`, получаем:
$$ \left\{\begin{array}{l}30x-15y-9z=-27,\\ 30x+20y-25z=-5.\end{array}\right.$$
Вычитаем из второго уравнения полученной системы первое уравнение, получаем:
`35y-16z=22`.
Из второго уравнения исходной системы вычитаем третье уравнение, умноженное на `2`, получаем:
`4y+8y-5z+12z=-1+46`, `12y+7z=45`.
Теперь решаем новую систему уравнений:
$$ \left\{\begin{array}{l}35y-16z=22,\\ 12y+7z=45.\end{array}\right.$$
К первому уравнению новой системы, умноженному на `7`, прибавляем второе уравнение, умноженное на `16`, получаем:
`35*7y+12*16y=22*7+45*16`,
`245y+192y=154+720`, `437y=874`, `y=2`.
Подставляем `y=2` в уравнение `12y+7z=45`, получаем:
`24+7z=45`, `7z=21`, `z=3`.
Теперь подставляем `y=2`, `z=3` в первое уравнение исходной системы, получаем:
`10x-5*2-3*3=-9`, `10x-10-9=-9`, `10x=10`, `x=1`.
`(1;2;3)`.
При решении задач могут получаться системы уравнений с большим количеством неизвестных, их решение осуществляется аналогичным образом.
В данном параграфе мы познакомимся со способами решения систем двух линейных уравнений с модулями.
Решите систему уравнений $$ \left\{\begin{array}{l}\left|x-y\right|=5,\\ 3x+2y=10.\end{array}\right.$$
Модуль в уравнении `|x-y|=5` можно «раскрыть», пользуясь определением модуля числа:
$$\left|x-y\right|=\left\{\begin{array}{l}x-y,\;\mathrm{или}\;x-y\geq0,\\y-x,\;\mathrm{или}\;x-y<0.\end{array}\right.$$
Следовательно, уравнение `|x-y|=5` при `x-y>=0` записывается в виде `x-y=5`, а при `x-y<0` в виде `y-x=5`, и поэтому вместо одной системы уравнений с модулем нам придётся рассмотреть две соответствующие системы.
1 случай. Если `x-y>=0`, система имеет вид:
$$ \left\{\begin{array}{l}x-y=5,\\ 2x+3y=10,\end{array}\right. \left\{\begin{array}{l}3x-3y=15,\\ 2x+3y=10,\end{array}\right. \left\{\begin{array}{l}5x=25,\\ x-y=5,\end{array}\right. \left\{\begin{array}{l}x=5,\\ y=0.\end{array}\right.$$
Итак, `x=5`, `y=0`, условие `x-y>=0` выполняется. Значит, найденные пары чисел является решением исходной системы.
2 случай. Если `x-y<0`, система имеет вид:
$$ \left\{\begin{array}{l}y-x=5,\\ 2x+3y=10,\end{array}\right. \left\{\begin{array}{l}2y-2x=10,\\ 2x+3y=10,\end{array}\right. \left\{\begin{array}{l}y-x=5,\\ 5y=20,\end{array}\right. \left\{\begin{array}{l}x=-1,\\ y=4.\end{array}\right.$$
При `x=-1`, `y=4`, условие `x-y<0` также выполняется.
Таким образом, система имеет два решения `(5;0)` и `(-1;4)`.
Итак, при решении уравнения с модулем мы выполнили следующие шаги:
1) «раскрыли» модуль;
2) решили системы для двух случаев;
3) проверили для каждой из систем, удовлетворяет ли найденная пара чисел рассматриваемому случаю.
Однако в системе уравнений может оказаться не один, а два, три или более модулей. В этом случае необходимо рассмотреть все возможные варианты раскрытия модулей.
Решите систему уравнений $$ \left\{\begin{array}{l}\left|x\right|+2y=\mathrm{1,5},\\ 2x-4\left|y\right|=3.\end{array}\right.$$
По определению модуля числа
$$\left|x\right|=\left\{\begin{array}{l}x,\;\;\;x\geq0,\\-x,\;x<0,\end{array}\right.\;\;\left|y\right|=\left\{\begin{array}{l}y,\;\;\;\;y\geq0,\\-y,\;y<0.\end{array}\right.$$
Значит нужно рассмотреть 4 случая:
1) `x>=0`, `y>=0`;
2) `x>=0`, `y<0`;
3) `x<0`, `y>=0`;
4) `x<0`, `y<0`.
1 случай. `x>=0`, `y>=0`, система имеет вид:
$$ \left\{\begin{array}{l}x+2y=\mathrm{1,5},\\ 2x-4y=3,\end{array}\right. \left\{\begin{array}{l}2x+4y=3,\\ 2x-4y=3,\end{array}\right. \left\{\begin{array}{l}8y=0,\\ x+2y=\mathrm{1,5},\end{array}\right.\left\{\begin{array}{l}x=\mathrm{1,5},\\ y=0.\end{array}\right.$$
Оба полученные значения удовлетворяют заданным условиям: `1,5>=0`, `0>=0`.
2 случай. `x>=0`, `y<0` система имеет вид:
$$ \left\{\begin{array}{l}x+2y=\mathrm{1,5},\\ 2x+4y=3,\end{array}\right. \left\{\begin{array}{l}x+2y=\mathrm{1,5},\\ x+2y=\mathrm{1,5},\end{array}\right. x+2y=\mathrm{1,5}$$.
Получим равносильную систему, уравнения которой совпадают. Значит, исходная система равносильна каждому из данных уравнений. Следовательно, система имеет бесконечно много решений, где общие решения можно записывать в виде `(1,5-2y;y)`, где `y<0`. Очевидно, что при этом `x=1,5-2y>=0`.
3 случай. `x<0`, `y>=0` система имеет вид:
$$ \left\{\begin{array}{l}-x+2y=\mathrm{1,5},\\ 2x-4y=3,\end{array}\right.\left\{\begin{array}{l}-2x+4y=3,\\ 2x-4y=3,\end{array}\right. \left\{\begin{array}{l}-2x+4y+2x-4y=6,\\ -x+2y=\mathrm{1,5}.\end{array}\right.$$
Первое уравнение не имеет решения, так как сводится к равенству `0=6`, значит система не имеет решений.
4 случай. `x<0`, `y<0` система имеет вид:
$$ \left\{\begin{array}{l}-x+2y=\mathrm{1,5},\\ 2x+4y=3,\end{array}\right.\left\{\begin{array}{l}-2x+4y=3,\\ 2x+4y=3,\end{array}\right. \left\{\begin{array}{l}4x=0,\\ -x+2y=\mathrm{1,5},\end{array}\right. \left\{\begin{array}{l}x=0,\\ y=\mathrm{0,75}.\end{array}\right.$$
Значение `x` не удовлетворяет заданному условию: неравенство `0<0` логично. Значит, и в этом случае решений тоже нет.
Обобщая все 4 случая и учитывая, что пара чисел `(1,5;0)` имеет вид `(1,5-2y;y)` при `y=0`, мы можем записать множество решений исходной системы.
`(1,5-2y;y)`, где `y<=0`.
Алгоритм решения системы двух линейных уравнений с модулем
1. Найти в уравнениях все выражения, содержащиеся под знаком модуля.
2. Рассмотреть всевозможные комбинации случаев, когда каждое из этих выражений принимает неотрицательные и отрицательные значения.
3. Для каждого возможного случая «раскрыть» модули, используя определение модуля.
4. Решить все полученные системы.
5. Для каждого случая отобрать те решение системы, которые ему удовлетворяют.
Можно и другим способом решать, например:
Решите систему уравнений
$$ \left\{\begin{array}{l}2\left|x\right|-3\left|y-1\right|=3,\\ 3x-2y=5.\end{array}\right.$$
Из второго уравнения системы выражаем `x` через `y`, получаем `x=(2y+5)/3`, подставляем это значение для `x` в первое уравнение системы, получаем:
`2/3|2y+5|-3|y-1|=3`; `4/3|y+5/2|-3|y-1|=3`.
Выражение `y+5/2=0` при `y=-5/2`.
Если `y> -5/2`, то `|y+5/2|=y+5/2`; если `y< -5/2`, то `|y+5/2|=-y-5/2`.
Выражение `y-1=0`, если `y=1`.
Если `y>1`, то `|y-1|=y-1`, а если `y<1`, то `|y-1|=1-y`.
Если `y>=1`, то `|y-1|=y-1` и `|y+5/2|=y+5/2`, получаем уравнение:
`4/3(y+5/2)-3(y-1)=3`, `4/3y+10/3-3y+3=3`, `-5/3y=-10/3`, `y=2`.
Тогда `x=1/3(2*2+5)=3`. Число `2>1`, так что пара `(3;2)` является решением системы.
Пусть теперь `-5/2 <=y<1`, тогда `|y-1|=1-y`; `|y+5/2|=y+5/2`.
Для нахождения `y` получаем уравнение
`4/3(y+5/2)+3y-3=3`, `4/3y+10/3+3y=6`, `13/3y=8/3`, `y=8/13`;
`x=1/3(2y+5)=1/3(16/13+5)=27/13`.
Число `8/13` больше `(-5/2)`, но меньше, чем `1`, поэтому пара чисел `(27/13;8/13)` является решением системы.
Если `y< -5/2`, то получаем уравнение:
`-4/3(y+5/2)+3y-3=3`, `-4/3y-10/3+3y=6`, `5/3y=28/3`, `y=28/5`.
Это значение больше, чем `(-5/2)`, поэтому решений нет.
Таким образом, система имеет два решения `(3;2)` и `(27/13;8/13)`.
Теперь рассмотрим решение систем содержащих параметр.
Системы линейных уравнений с параметром решаются теми же основными методами, что и обычные системы уравнений: метод подстановки, метод сложения уравнений и графический метод.
Рассмотрим систему уравнений $$ \left\{\begin{array}{l}ax+4y=2a,\\ x+ay=a.\end{array}\right.$$
В этой системе, на самом деле, три переменные, а именно: `a`, `x`, `y`. Неизвестными считают `x` и `y`, `a` называют параметром. Требуется найти решения `(x, y)` данной системы при каждом значении параметра `a`.
Покажем, как решают такие системы. Выразим переменную `x` из
второго уравнения системы: `x=a-ay`. Подставляем это значение для `x` в первое уравнение системы, получаем:
`a(a-ay)+4y=2a`,
`(2-a)(2+a)y=a(2-a)`.
Если `a=2`, то получаем уравнение `0*y=0`. Этому уравнению удовлетворяет любое число `y`, и тогда `x=2-2y`, т. е. при `a=2` пара чисел `(2-2y;y)` является решением системы. Так как `y` может быть любым числом, то система при `a=2` имеет бесконечно много решений.
Если `a=-2`, то получаем уравнение `0*y=-8`. Это уравнение не имеет ни одного решения.
Если теперь `a!=+-2`, то `y=(a(2-a))/((2-a)(2+a))=a/(2+a)`,
`x=a-ay=a-a^2/(2+a)=(2a)/(2+a)`.
При `a=2` система имеет бесконечно много решений вида `(2-2y;y)`, где `y` - любое число;
при `a=-2` система не имеет решений;
при `a!=+-2`, система имеет единственное решение `((2a)/(2+a); a/(2+a))`.
Мы решили эту систему и установили, при каких значениях параметра `a` система имеет одно решение, когда имеет бесконечно много решений и при каких значениях параметра `a` она не имеет решений.
При каких значениях параметра `a` система
$$ \left\{\begin{array}{l}x+y=5,\\ x+y=a\end{array}\right.$$
не имеет решений?
Левые части уравнений системы равны. Если будут равны и правые, то есть `a=5`, то получим `2` одинаковых уравнения `x+y=5`, и решением системы будут все пары `(x,y)`, которые удовлетворяют уравнению `x+y=5`, т. е. все точки прямой `y=-x+5`.
Но, если `a!=5`, то получим два уравнения, у которых левые части равны, а правые нет, это две параллельные прямые `y=-x+5` и `y=-x+a`.
Они не пересекаются, и значит, система не имеет решений.
При `a!=5` система не имеет решений.
Путь от города до посёлка автомобиль проезжает за `2,5` часа. Если он увеличит скорость на `20` км/ч, то за `2` часа он проедет путь на `15` км больший, чем расстояние от города до посёлка. Найдите расстояние от города до посёлка.
Обозначим через `S` расстояние между городом и посёлком и через `v` скорость автомобиля. Тогда для нахождения `S` получаем систему из двух уравнений
$$ \left\{\begin{array}{l}\mathrm{2,5}v=S,\\ \left(v+20\right)2=S+15.\end{array}\right.$$
Из первого уравнения `v=S/(2,5)=2/5S`, подставляем это значение `v` во второе уравнение:
`(2/5S+20)2=S+15`, `1/5S=25`, `S=125`.
`125` км.
Сумма цифр двузначного числа равна `15`. Если эти цифры поменять местами, то получится число, которое на `27` больше исходного. Найдите эти числа.
Пусть данное число `bar(ab)`, т. е. число десятков равно `a`, а число единиц равно `b`. Из первого условия задачи имеем: `a+b=15`. Если из числа `bar(ba)` вычесть число `bar(ab)`, то получится `27`, отсюда получаем второе уравнение: `10b+a-(10a+b)=27`.
Решаем систему уравнений
$$ \left\{\begin{array}{l}a+b=15,\\ -9a+9b=27,\end{array}\right.$$ $$ \left\{\begin{array}{l}a+b=15,\\ a-b=-3.\end{array}\right.$$
Сложим уравнения последней системы, получаем: `2a=12`, `a=6`, тогда `b=9`. Заданное число `69`, второе число `96`.
`69` и `96`. ▲
Имеется сталь двух сортов с содержанием никеля `5%` и `40%`. Сколько нужно взять каждого из этих сортов стали, чтобы получилось `140` т стали с содержанием никеля `30%`?
Обозначим через `x` массу стали с `5%` содержанием никеля и через `y` массу стали с `40%` содержанием никеля. Тогда `x+y=140`. В `x` тоннах стали содержится `0,05x` никеля, а в `y` тоннах стали содержится `0,04y` никеля. Масса никеля равна `0,05x+0,4y` и составляет `30%` от `140` т, т. е. `3/10 140 "т"=42 "т"`. Получили второе уравнение
`0,05x+0,4y=42`.
Умножим обе части уравнения на `20`, получим: `x+8y=840`.
Для нахождения `x` и `y` получили систему уравнений
$$ \left\{\begin{array}{l}x+y=140,\\ x+8y=840.\end{array}\right.$$
Вычтем из второго уравнения первое уравнение, получим: `7y=700`, `y=100` тогда `x=140-y=40`.
`40` т, `100` т.
Оператор ЭВМ, работая с учеником, обрабатывает задачу за `2` ч `24` мин. Если оператор будет работать `2` ч, а ученик `1` ч, то будет выполнено `2/3` всей работы. Сколько времени потребуется оператору и ученику в отдельности на обработку задачи?
Обозначим всю работу за `1`, производительность оператора за `x` и производительность ученика за `y`. Учитываем, что
`2` ч `24` мин`=2 2/5` ч `=12/5` ч.
Из первого условия задачи следует, что `(x+y)12/5=1`. Из второго условия задачи следует, что `2x+y=2/3`. Получили систему уравнений
$$ \left\{\begin{array}{l}\left(x+y\right)\frac{12}{5}=1,\\ 2x+y=\frac{2}{3}.\end{array}\right.$$
Решаем эту систему методом подстановки:
`y=2/3-2x`; `(x+2/3-2x)12/5=1`; `(2/3-x)12/5=1`; `12/5x=8/5-1`;
`12/5x=3/5`; `x=1/4`; `y=2/3-1/2=1/6`.
Для оператора понадобится `4` часа `(1:1/4=4)`, а ученику `– 6` часов `(1:1/6=6)`.
Слово «электричество» может вызвать представление о сложной современной технике: компьютерах, телевизорах, электродвигателях и т. д. Но электричество играет в нашей жизни гораздо более серьёзную роль. Действительно, согласно современной теории строения вещества, силы, действующие между атомами и молекулами, в результате чего образуются жидкие и твёрдые тела, – это электрические силы. Они ответственны и за обмен веществ, происходящий в человеческом организме. Даже когда мы что-нибудь тянем или толкаем, это оказывается результатом действия электрических сил между молекулами руки и того предмета, на который мы воздействуем. И вообще, большинство сил (например, силы упругости, силы реакции опоры) сегодня принято считать электрическими силами, действующими между атомами. Сила тяжести, однако, не относится к электрическим силам.
Электрические явления известны с древних времён, но лишь в последние два столетия они были досконально изучены. По современным представлениям вся совокупность электрических и магнитных явлений есть проявление существования, движения и взаимодействия электрических зарядов. В настоящем Задании мы познакомимся с основными понятиями, определениями и законами, утвердившимися при описании электрических явлений.
По современным представлениям атом состоит из массивного положительно заряженного ядра, состоящего из протонов и нейтронов, и движущихся вокруг ядра отрицательно заряженных электронов. В нормальном состоянии положительный заряд ядра (его носителями являются находящиеся в ядре протоны) равен по величине (т. е. по модулю) отрицательному заряду электронов, и атом в целом электрически нейтрален. Однако атом может терять или приобретать один или несколько электронов. Тогда его заряд будет положительным или отрицательным, и такой атом называется ионом.
В твёрдом теле ядра атомов могут колебаться, оставаясь вблизи фиксированных положений, в то время как часть электронов движется свободно. Электризацию трением можно объяснить тем, что в различных веществах ядра удерживают электроны с различной силой. Когда пластмассовая линейка, которую натирают бумажной салфеткой, приобретает отрицательный заряд, это означает, что электроны в бумажной салфетке удерживаются слабее, чем в пластмассе, и часть их переходит с салфетки на линейку. Положительный заряд салфетки равен по величине отрицательному заряду, приобретённому линейкой. Таким образом, при электризации тел заряды не создаются, а перераспределяются. Этим и объясняется явление электризации: электроны удаляются из тела или заимствуются у атомов другого тела, но не уничтожаются и не создаются вновь. Следует заметить, что при описанном способе электризации трение не играет принципиальной роли: сдавливая тела, мы просто сближаем их поверхности, которые без этого соприкасались бы в немногих точках вследствие неровностей и выступов.
Наэлектризовать тело можно и другими способами. Например, приведя незаряженное тело в соприкосновение с заряженным. Возможна электризация через влияние, т. е. без непосредственного контакта. Опыт показывает, что под действием заряженного тела на незаряженном может происходить перераспределение электронов или упорядочение молекул (или атомов), вследствие чего части незаряженного тела оказываются наэлектризованными. Это явление получило название электризации через влияние, или электростатической индукции, а заряды, возникающие вследствие перераспределения (упорядочения), индуцированными.
Электризация у некоторых веществ может происходить под действием электромагнитных волн: электроны покидают облучаемую поверхность, в результате тело заряжается положительно. Это явление называется фотоэлектрическим эффектом, или кратко фотоэффектом.
В результате действия ультрафиолетового электромагнитного излучения на первоначально незаряженное тело его поверхность покинуло `N=4,0*10^(10)` электронов. Найдите заряд `Q` тела? Элементарный заряд `e=1,6*10^(-19)`Кл.
Положительный заряд тела будет обусловлен некомпенсированным электронами зарядом `Q=N*e=4,0*10^(10)*1,6*10^(-19)=6,4*10^(-9)`Кл.
Слово электричество происходит от греческого названия янтаря – ελεκτρον. Янтарь – это окаменевшая смола хвойных деревьев; древние заметили, что если натереть янтарь куском шерстяной ткани, то он будет притягивать лёгкие предметы и пыль. В конце XVI века английский учёный У. Гильберт обнаружил, что таким же свойством обладают стекло и ряд других веществ, натёртых шёлком. Теперь мы говорим, что в этих случаях тела, благодаря трению, приобретают электрический заряд, а сами тела называем заряженными.
Все ли электрические заряды одинаковы или существуют различные их виды? Опыт показывает, что существует два и только два вида зарядов, причём заряды одного вида отталкиваются, а заряды разных видов притягиваются. Мы говорим, что одноимённые заряды отталкиваются, а разноимённые притягиваются.
Американский учёный Б. Франклин (XVIII век) назвал эти два вида зарядов положительными и отрицательными. Какой заряд как назвать было совершенно безразлично; Франклин предложил считать заряд наэлектризованной стеклянной палочки положительным. В таком случае заряд, появляющийся на янтаре, потёртом о шерсть, будет отрицательным. Этого соглашения придерживаются и по сей день.
О заряженных телах говорят, что одни тела наэлектризованы сильнее, а другие слабее. Для того чтобы такие утверждения имели смысл, следует установить количественную меру, позволяющую сравнивать степени наэлектризованности тел. Мерой наэлектризованности любого тела является электрический заряд `Q` этого тела (латинские буквы `q` и `Q` традиционно используются для обозначения заряда). В свою очередь, незаряженные тела называют электронейтральными, или просто нейтральными, их заряд равен нулю.
В международной системе единиц (сокращенно СИ) единицей измерения заряда служит кулон (Кл) (в честь французского учёного Шарля Кулона, установившего в 1785 г. закон взаимодействия точечных зарядов). Определение этой единицы в СИ даётся через единицу измерения силы тока и будет представлено ниже.
Развитие науки о природе привело не только к открытию элементарных частиц (протонов, электронов, нейтронов и др.), но и показало, что электрический заряд не может существовать сам по себе, без элементарной частицы – носителя заряда.
Важными свойствами заряда являются его делимость и независимость от скорости.
Экспериментально установлена делимость электрического заряда и существование его наименьшей порции. Эту наименьшую величину электрического заряда называют элементарным зарядом `e=1,6*10^(-19)`Кл. Несмотря на значительные экспериментальные усилия, к настоящему времени не обнаружены в свободном состоянии носители с зарядом `|q|<e`, где `e` - элементарный заряд.
Носителями электрического заряда являются элементарные частицы, например, электроны (заряд каждого `q_e=-e=-1,6*10^(-19)`Кл), протоны (заряд каждого `q_p=e=1,6*10^(-19)`Кл). Экспериментально установлено, что отрицательный заряд электрона равен (с высокой точностью) по абсолютному значению положительному заряду протона. Величина заряда любого тела кратна элементарному заряду.
Металлическому шару путём удаления части электронов сообщается заряд `Q=2,0*10^(-6)` Кл. Сколько электронов удалено с шара? На сколько изменится масса шара? Элементарный заряд `e=1,6*10^(-19)`Кл, масса электрона `m_e=0,9*10^(-30)`кг.
Количество удалённых электронов найдём из равенства
`N=(-Q)/(-e)=(2,0*10^(-6))/(1,6*10^(-19))=1,25*10^(13)`.
Масса электронов, удалённых с шара,
`m=N*m_e=1,25*10^(13)*0,9*10^(-30)=1,125*10^(-17)`кг
даёт ответ на второй вопрос задачи. Отметим, что убыль массы шара очень мала.
Независимость элементарного заряда от скорости носителя доказывается фактом электронейтральности атомов, в которых вследствие различия масс электрона и протона лёгкие электроны, видимо, движутся значительно быстрее массивных протонов. Если бы заряд зависел от скорости, нейтральность атомов не могла бы соблюдаться. Так что независимость заряда от скорости принимается в качестве одного из экспериментальных фактов, на которых строится теория электричества.
Лишь в XIX веке стало ясно: причина существования электрического заряда кроется в самих атомах. Позднее (в другом Задании) мы обсудим строение атома и развитие представлений о нём более подробно; здесь же кратко остановимся на основных идеях, которые помогут нам лучше понять природу электричества.
По поведению зарядов в наэлектризованном теле все вещества делятся на проводники и изоляторы (диэлектрики). В диэлектриках сообщённый им заряд остаётся в том месте, куда он был помещён при электризации. В проводниках сообщённый заряд может свободно перемещаться по всему телу. Именно поэтому проводящие тела можно заряжать электризацией через влияние. Почти все природные материалы попадают в одну из этих двух резко различных категорий. Есть, однако, вещества (среди которых следует назвать кремний, германий, углерод), принадлежащие к промежуточной, но тоже резко обособленной категории. Их называют полупроводниками.
С точки зрения атомной теории электроны в изоляторах связаны с атомами очень прочно, в то время как в проводниках многие электроны связаны с атомами очень слабо и могут свободно перемещаться внутри вещества. Такие электроны называют «свободными», или электронами проводимости. Слово «свободными» взято в кавычки, так как свойства электронов в металле значительно отличаются от свойств действительно свободных электронов в вакууме. В металлических телах – проводниках электричества – число свободных электронов огромно. Проиллюстрируем это утверждение на следующем примере.
Оцените число `n` свободных электронов в `V=1"м"^3` меди, считая, что в меди в среднем в расчёте на один атом свободным является один электрон. Плотность меди `rho=8,9*10^3 "кг"//"м"^3`, в `M=64` г меди содержится `N_A=6,02*10^(23)` атомов.
Согласно условию число свободных электронов в любом объёме меди равно числу атомов в нём. Поэтому определим число атомов в объёме `V`. Для этого следует массу меди `rhoV` разделить на `M` и умножить на `N_A`, т. е.
`N=(rhoV)/M N_A=(8,9*10^3*1)/(64*10^(-3))*6,02*10^(23)~~8,4*10^(28)`.
Найденная величина называется концентрацией носителей.
Сохранение электрического заряда представляет собой важнейшее известное из опыта его свойство: в изолированной системе алгебраическая сумма зарядов всех тел остаётся неизменной. Справедливость этого закона подтверждается не только в процессах электризации, но и в наблюдениях над огромным числом рождений, уничтожений и взаимных превращений элементарных частиц. Закон сохранения электрического заряда – один из самых фундаментальных законов природы. Неизвестно ни одного случая его нарушения. Даже в тех случаях, когда происходит рождение новой заряженной частицы, обязательно одновременно рождается другая частица с равным по величине и противоположным по знаку зарядом.
Электрический заряд элементарной частицы не зависит ни от выбора системы отсчёта, ни от состояния движения частицы, ни от её взаимодействия с другими частицами. Поэтому и заряд макроскопического тела не зависит ни от движения составляющих его частиц, ни от движения тела как целого.
Два одинаковых проводящих шарика, несущих заряды `Q_1=-9,0*10^(-9)` Кл и `Q_2=2,0*10^(-9)` Кл, приводят в соприкосновение и удаляют друг от друга. Какими станут заряды `Q_1^'` и `Q_2^'` шариков?
После приведения шариков в соприкосновение заряды, свободно перемещающиеся в проводниках, придут в движение и разделятся поровну между шариками. Действительно у зарядов «нет оснований предпочесть» один из шариков: «с точки зрения зарядов» шарики неотличимы. Тогда `Q_1^'=Q_2^'`. Заряды шариков найдём по закону сохранения электрического заряда:
`Q_1+Q_2=2Q_1^'`.
Отсюда `Q_1^'=(Q_1+Q_2)/2=(-9,0*10^(-9)+2,0*10^(-9))/2=-3,5*10^(-9)` Кл.
Соображения симметрии, использованные при решении задачи, являются важнейшими в физике, к ним мы будем неоднократно обращаться в дальнейшем в различных разделах курса физики.
Свободный нейтрон `n` - незаряженная частица – распадается на протон `p`, электрон `e^-` и электронное антинейтрино $$ {\stackrel{~}{\nu }}_{e}$$. Схему этой реакции записывают в виде $$ n\to p+{e}^{-}+{\stackrel{~}{\nu }}_{e}$$. Найдите заряд `q` антинейтрино.
По условию нейтрон – незаряженная частица. Заряды протона и электрона равны соответственно `e` и `-e`. Из закона сохранения заряда следует, что заряд нейтрона равен сумме зарядов продуктов реакции, т. е. протона, электрона и антинейтрино:
`0=e+(-e)+q`.
Отсюда `q=0`.
Заряд электронного антинейтрино равен нулю.