16 статей
Мы рады приветствовать вас на курсе Информатики. Данный курс рассчитан на три года обучения. Ориентировочно, это девятый, десятый и одиннадцатый классы средней школы. Поэтому в ходе изложения будут использоваться соответствующие знания из курсов математики.
Данный курс состоит из трёх больших частей, которые будут чередоваться по заданиям. Первая часть курса – теоретическая. В ней будут рассматриваться общие знания, которые необходимы любому человеку, собирающемуся связать свою жизнь с техническими специальностями. В частности, будут рассматриваться особенности представления информации различного вида (числовая, текстовая, графическая и т. д.), алгебра логики, математическая теория информации, теория алгоритмов и многое другое.
Вторая часть курса – программистская. В этой части мы будем рассматривать основные концепции языков программирования и учиться писать полноценные программы. Вас ждёт большое множес-тво задач самого разного вида. По завершении курса вы сможете не просто писать программы на одном языке программирования, но уже будете обладать достаточными знаниями, чтобы самостоятельно легко изучать другие языки.
Третья часть курса – технологическая. Здесь будут рассматриваться информационно-коммуникационные технологии. В частности, компьютерные сети, обработка баз данных, работа с электронными таблицами и т. д.
На первом году обучения теоретических заданий не будет, а основная масса будет посвящена программистской части курса. Основная цель первого года обучения – овладеть языком программирования как инструментом для дальнейшего использования. В качестве учебного языка программирования мы выберем язык Pascal. Тому есть несколько причин. Во-первых, этот язык изначально создавался для обучения программированию, и в нём нет большого количества сложных тонкостей, для понимания которых требуются глубокие специальные знания (как, например, в языках C/C++). Во-вторых, концептуально Pascal является каноническим языком процедурной парадигмы программирования, и после него можно очень легко переходить на любые другие языки.
Также нам будет интересно не просто решить конкретную задачу, а овладеть стратегиями для решения больших классов задач. Нужно будет научиться видеть общие моменты в предлагаемых задачах и сформировать определённые шаблоны для быстрого написания программ. Кроме того, особое внимание мы будем уделять красоте и эффективности алгоритмов.
Для выполнения заданий программистской части курса вам будет необходимо установить себе среду программирования, либо воспользоваться online-компилятором. Имейте в виду, что даже для языка Pascal различные среды программирования могут серьёзно различаться (например, free pascal и Pascal ABC.NET). Мы будем обращать внимание на данные различия по ходу изложения материала.
В рамках первого задания мы будем изучать основы языка программирования и особенности выполнения арифметических операций.
– производные углеводородов, в которых один или несколько атомов водорода замещены на гидроксильную группу – `"OH"`. Спирты, содержащие одну -`"OH"` группу, называются алкоголями, две – гликолями, три – глицеринами.
В зависимости от характера углеводородного радикала спирты делятся на алифатические (метанол, изопропанол и т. п.), циклические (циклопентанол и т. п.), ароматические (бензиловый спирт).
Соединения, у которых `"OH"`- группа непосредственно связана с бензольным кольцом, называют фенолами.
В зависимости от того, при каком углеродном атоме находится гидроксильная группа, различают спирты первичные `("RCH"_2-"OH")`, вторичные `("R"_2"CH"-"OH")` и третичные `("R"_3"C"-"OH")`.
Простейшие первичные алифатические спирты:
`"CH"_3-"OH"` метанол
`"CH"_3-"CH"_2-"OH"` этанол
`"CH"_3-"CH"_2-"CH"_2-"OH"` пропанол-1
Вторичные:
Третичный:
По числу гидроксильных групп в молекуле спирты делятся на одноатомные и многоатомные. Общая формула гомологического ряда предельных одноатомных спиртов - `"C"_"n""H"_(2"n"+1)"OH"`.
связана: а) со строением углеродного скелета, например,
б) c положением функциональной группы – `"OH"`:
в) межклассовые изомеры спиртам – простые эфиры:
Названия спиртов образуют, добавляя суффикс -ол к названию углеводорода с самой длинной углеродной цепью, включающей гидроксильную группу. Нумерацию начинают с того конца, к которому ближе расположена гидроксильная группа. Положение группы указывается цифрой после названия спирта. У циклических спиртов нумерацию атомов углерода в цикле начинают с того атома, при котором находится гидроксильная группа, и ведут таким образом, чтобы заместитель получил возможно меньший номер. Если гидроксильных групп в молекуле несколько, в названии спиртов используется суффикс -диол, -триол и т. д. Кроме того, используется заместительная номенклатура, по которой название спирта производится от соответствующего углеводородного радикала, заканчивая его - овый и добавляя слово «спирт». Примеры:
Одноатомные спирты
Спирты до `"C"_(15)` – жидкости, высшие спирты – твёрдые вещества. Низшие спирты смешиваются с водой в любых соотношениях. С ростом молекулярной массы растворимость спиртов в воде падает; высшие спирты, начиная с гексилового, практически нерастворимы. Спирты имеют высокие температуры плавления и кипения за счёт образования межмолекулярных водородных связей:
Возможность образования водородных связей между молекулами спиртов и воды способствует растворению спиртов в воде, причём чем больше гидроксильных групп и короче углеводородный радикал, тем выше растворимость. Высшие спирты по растворимости подобны углеводородам.
1. Гидратация алкенов при нагревании в присутствии кислотных катализаторов:
$$ {\mathrm{CH}}_{2}={\mathrm{CH}}_{2}+{\mathrm{H}}_{2}\mathrm{O}\underset{\mathrm{t}°}{\overset{{\mathrm{H}}^{+}}{\to }}{\mathrm{CH}}_{3}-{\mathrm{CH}}_{2}-\mathrm{OH}$$
Присоединение воды к несимметричным алкенам идёт по правилу Марковникова:
2. Гидролиз алкилгалогенидов под действием водных растворов щелочей:
`"R"-"Br"+"NaOH"->"R"-"OH"+"NaBr"`.
3. Восстановление карбонильных соединений при нагревании над `"Ni"` или `"Pt"`:
`"R"-"CH"="O"+"H"_2->"R"-"CH"_2-"OH"`
`"R"-"CO"-"R"^'+"H"_2->"R"-"CH"("OH")-"R"^'`.
4. Этанол получают при спиртовом брожении сахаров:
$$ {\mathrm{C}}_{6}{\mathrm{H}}_{12}{\mathrm{O}}_{6}\stackrel{\mathrm{ферменты}}{\to }2{\mathrm{C}}_{2}{\mathrm{H}}_{5}\mathrm{OH}+2{\mathrm{CO}}_{2}\uparrow $$.
5. Метанол получают из синтез-газа (промышленный способ) под давлением `5–10` МПа с использованием оксидных катализаторов `("CuO", "ZnO", "Cr"_2"O"_3)` в интервале температур `250-400^@"C"`:
$$ \mathrm{CO}+2{\mathrm{H}}_{2}\underset{\mathrm{t}°,\mathrm{p}}{\overset{\mathrm{кат}}{\to }}{\mathrm{CH}}_{3}\mathrm{OH}$$.
Характерные свойства спиртов можно представить в виде схемы:
Реакции с разрывом связи `"O"-"H"`
1. Слабые кислотные свойства. Спирты реагируют со щелочными металлами, но не реагируют со щелочами:
`2"C"_2"H"_5"OH"+2"K"->2"C"_2"H"_5"OK"+"H"_2 uarr` этилат калия
2. Реакция этерификации. Взаимодействие с органическими и минеральными кислотами:
$$ {\mathrm{C}}_{2}{\mathrm{H}}_{5}\mathrm{OH}+{\mathrm{CH}}_{3}\mathrm{COOH}\stackrel{{\mathrm{H}}^{+}}{\rightleftarrows }{\mathrm{H}}_{2}\mathrm{O}+{\mathrm{CH}}_{3}{\mathrm{COOC}}_{2}{\mathrm{H}}_{5} \left(\mathrm{этилацетат}\right)$$
$$ {\mathrm{C}}_{2}{\mathrm{H}}_{5}\mathrm{OH}+{\mathrm{HONO}}_{2}\rightleftarrows {\mathrm{H}}_{2}\mathrm{O}+{\mathrm{C}}_{2}{\mathrm{H}}_{5}-\mathrm{O}-{\mathrm{NO}}_{2} \left(\mathrm{этилнитрат}\right)$$
Реакции с разрывом связи `"C"-"О"`
1. Реакция нуклеофильного замещения `"S"_"N"`. В процессе разрыва связи `"C"-"O"` происходит замещение гидроксильной группы другими нуклеофилами:
$$ {\mathrm{CH}}_{3}-{\mathrm{CH}}_{2}-\mathrm{OH}+\mathrm{HBr}\rightleftarrows {\mathrm{CH}}_{3}-{\mathrm{CH}}_{2}-\mathrm{Br}+{\mathrm{H}}_{2}\mathrm{O}$$
2. Реакции дегидратации протекают при нагревании с водоотнимающими веществами:
$$ \begin{array}{l}{\mathrm{CH}}_{3}-{\mathrm{CH}}_{2}-\mathrm{OH}\underset{\mathrm{t}°>140°\mathrm{C}}{\overset{{\mathrm{H}}_{2}{\mathrm{SO}}_{4}}{\to }}{\mathrm{CH}}_{2}={\mathrm{CH}}_{2}+{\mathrm{H}}_{2}\mathrm{O}\\ (\mathrm{внутримолекулярная} \mathrm{дегидратация})\end{array}$$
Реакции окисления
Для подбора стехиометрических коэффициентов в окислительно-восстано-вительных реакциях (ОВР) возможны два метода: электронного (программа ОГЭ по химии) и электронно-ионного баланса (см. методическое указание «Углеводороды»). Для определения степени окисления атомов в молекулах органических веществ в методе электронного баланса существует несколько правил:
1. Сумма степеней окисления водорода в органической молекуле всегда `+1`, а кислорода `-2` (за исключением перекисей, где она составляет `-1`).
2. Молекулу необходимо разделить на фрагменты, включающие по одному атому углерода, в каждом из которых сумма степеней окисления всех атомов должна быть равна нулю.
Примеры:
Для спиртов возможно полное и неполное окисление:
1. Горение (полное окисление). Спирты горят на воздухе бледно-голубым пламенем с выделением большого количества теплоты. Горение предельных одноатомных спиртов выражает уравнение в общем виде:
`"C"_n"H"_(2n+1)"OH"+3n//2"O"_2->n"CO"_2+(n+1)"H"_2"O"`
2. Неполное окисление. В присутствии окислителей (например, `"CuO", "K"_2"Cr"_2"O"_7)`первичные спирты окисляются до альдегидов, а вторичные – до кетонов.
а) Рассмотрим окисление этанола до уксусного альдегида под действием `"K"_2"Cr"_2"O"_7` в кислой среде. Окислитель – `"K"_2"Cr"_2"O"_7` (за счёт `"Cr"^(+6)`). Восстановитель – этанол (за счёт углерода при гидроксиле `"C"^(-1)`).
`3"C"_2"H"_5"OH"+"K"_2"Cr"_2"O"_7+4"H"_2"SO"_4->`
`->3"CH"_3"COH"+"Cr"_2("SO"_4)_3+"K"_2"SO"_4+7"H"_2"O"`
$$ \left.\begin{array}{l}2{\mathrm{Cr}}^{+6}+6\left.\mathrm{e}\right.\to 2{\mathrm{Cr}}^{+3}\\ {\mathrm{C}}^{-1}-2\left.\mathrm{e}\right.\to {\mathrm{C}}^{+1}\end{array}\right|\begin{array}{c}1\\ 3\end{array}$$
Окисление оксидом меди (II):
б) Рассмотрим окисление вторичных спиртов:
$$ \left.\begin{array}{l}{\mathrm{C}}^{0}-2{e}^{-}\to {\mathrm{C}}^{+2}\\ {\mathrm{Mn}}^{+7}+5{e}^{-}\to {\mathrm{Mn}}^{+2}\end{array}\right|\begin{array}{c}5\\ 2\end{array}$$
Окисление вторичных спиртов оксидом меди (II):
в) Третичные спирты устойчивы к воздействию окислителей.
3. В более жёстких условиях (при нагревании в кислой среде с раствором `"KMnO"_4` или `"K"_2"Cr"_2"O"_7`) окисление первичных спиртов идёт до кислот:
`3"C"_2"H"_5"OH"+2"K"_2"Cr"_2"O"_7+8"H"_2"SO"_4->`
`->3"CH"_3"COOH"+2"Cr"_2("SO"_4)_3+2"K"_2"SO"_4+11"H"_2"O"`
Многоатомные спирты
Многоатомные спирты – это производные углеводородов, молекулы которых содержат несколько гидроксильных групп. Важнейшие из них – этиленгликоль и глицерин:
1. Гидролиз галогеналканов
2. Окисление алкенов холодным водным раствором `"KMnO"_4`(реакция Вагнера):
В щелочной среде окисление алкенов также приводит к образованию двухатомных спиртов:
3. Глицерин образуется при гидролизе жиров (cм. «Жиры», химические свойства).
Для двух- и трёхатомных спиртов характерны реакции одноатомных спиртов. Взаимное влияние гидроксильных групп проявляется в том, что многоатомные спирты – более сильные кислоты, чем одноатомные спирты. Многоатомные спирты могут реагировать по каждому гидроксилу отдельно.
1. Взаимодействие со щелочными металлами:
2. Взаимодействие со щелочами:
3. Взаимодействие с органическими или неорганическими кислотами приводит к образованию сложных эфиров:
4. Замещение гидроксильных групп на галоген:
5. Качественной реакцией на многоатомные спирты является появление ярко-синего окрашивания при действии свежеосаждённого гидроксида меди (II).
Цвет раствора обусловлен образованием комплексного гликолята (реакция 1) или глицерата меди (реакция 2):
называют производные ароматических углеводородов, атомы которых содержат одну или несколько гидроксильных групп, непосредственно соединённых с бензольным кольцом.
Одна из двух неподелённых электронных пар атома кислорода втягивается в `π`-электронную систему бензольного кольца (`+"М"`-эффект группы `"ОН"`). Это приводит к двум эффектам:
а) увеличивается электронная плотность в бензольном кольце, причём максимумы электронной плотности находятся в орто- и пара-положениях по отношению к группе `"ОН"`;
б) электронная плотность на атоме кислорода, напротив, уменьшается, что приводит к ослаблению связи `"О"-"Н"`. Первый эффект проявляется в высокой активности фенола в реакциях электрофильного замещения, а второй – в повышении кислотности фенола по сравнению с предельными спиртами.
Фенол – бесцветное кристаллическое легкоплавкое вещество (Тпл.`=41^@"C"`) с характерным запахом. На воздухе окисляется и становится розовым. Фенол плавится при достаточно низкой температуре `+41^@"C"`. Радикал фенил `"C"_6"H"_5`– по сравнению с алкильными радикалами от метильного до бутильного объёмный, поэтому растворимость фенола гораздо меньше, чем растворимость низших одноатомных спиртов.
Фенол – токсичное вещество, вызывающее ожоги кожи.
1. Щелочной гидролиз галогенбензолов:
`"C"_6"H"_5-"Cl"+2"NaOH"->"C"_6"H"_5-"ONa"+"NaCl"+"H"_2"O"`
с последующим разложением фенолята при помощи сильной кислоты:
`"C"_6"H"_5-"ONa"+"HCl"->"C"_6"H"_5-"OH"+"NaCl"`
2. Каталитическое окисление изопропилбензола (кумола) кислородом воздуха (промышленный способ):
Химические свойства фенолов представим в виде схемы:
Реакции с участием гидроксильной группы
1. Кислотные свойства. Фенол, как и спирты, взаимодействует с активными металлами, образуя соли – феноляты:
`2"C"_6"H"_5"OH"+2"Na"->2"C"_6"H"_5"ONa"+"H"_2 uarr`
Но в отличие от спиртов фенол диссоциирует в водном растворе по кислотному типу и взаимодействует с растворами щелочей (реакция нейтрализации):
`"C"_6"H"_5"OH"+"NaOH"->"C"_6"H"_5"ONa"+"H"_2"O"`.
Однако кислотные свойства фенола выражены слабо, поэтому даже такая слабая кислота, как угольная, вытесняет фенолы из растворов его солей:
`"C"_6"H"_5"ONa"+"H"_2"O"+"CO"_2->"C"_6"H"_5"OH"+"NaHCO"_3`.
2. Взаимодействие с раствором `"FeCl"_3` приводит к характерному фиолетовому окрашиванию. Это качественная реакция на фенольную гидроксильную группу.
3. Образование сложных эфиров (ацилирование фенолов) происходит только с участием ангидридов или галогенангидридов карбоновых кислот:
Реакции с участием бензольного кольца
Реакции электрофильного замещения `("S"_"E")` в бензольном кольце фенола протекают легче, чем у бензола, и в более мягких условиях.
1. Галогенирование. В отличие от бензола фенол реагирует с бромной водой при комнатной температуре и в отсутствие катализаторов с образованием белого осадка `2,4,6`-трибромфенола:
2. Нитрование. Продукты нитрования зависят от концентрации азотной кислоты. Нитрование разбавленной `"HNO"_3` приводит к образованию о- и п- нитрофенолов. Если же нитрование проводят концентрированной `"HNO"_3`, то образуется `2,4,6`-тринитрофенол:
3. Реакция поликонденсации с формальдегидом (см. «Карбонильные соединения», химические свойства). В результате реакции поликонденсации образуется высокомолекулярное соединение – фенолформальдегидная смола и вода.
Окислительно-восстановительные свойства фенола
1. Гидрирование фенола происходит в присутствии катализатора (реакция присоединения):
2. Окисление фенолов происходит легко даже под действием кислорода воздуха. При стоянии на воздухе фенол постепенно окрашивается в розовато-красный цвет. При окислении фенола хромовой смесью основным продуктом является хинон. При окислении гидрохинона также образуется хинон:
Органические соединения, в молекуле которых имеется карбонильная группа , называются карбонильными или оксосоединениями. Альдегиды – соединения, в которых карбонильная группа связана с углеводородным радикалом и с атомом водорода, в кетонах карбонил связан с двумя одинаковыми или различными углеводородными группами. Исключение составляет простейший альдегид – метаналь, в формуле которого вместо радикала содержится атом водорода:
. Общая формула предельных альдегидов и кетонов `"C"_"n""H"_(2"n")"O"`.
Атом углерода в карбонильной группе находится в состоянии `"sp"^2`-гибридизации и образует три `σ`-связи (одна из них `"C"–"O"`). Эти связи располагаются в одной плоскости под углом `120^@` друг к другу, а `π`-связь образована негибридной `р`-орбиталью атома углерода и `р`-орбиталью атома кислорода.
Двойная связь `"C"="O"` карбонильной группы является сочетанием `σ`- и `π`-связей; она сильно поляризована за счёт смещения электронной плотности `π`-связи к более электроотрицательному атому кислорода.
Поэтому карбонильный атом углерода приобретает частичный положительный заряд, а атом кислорода – частичный отрицательный заряд. Изогнутая стрелка показывает поляризацию `π`-связи.
альдегидов связана только с изомерией углеродного скелета, изомерия кетонов со строением углеродного скелета и с положением функциональной группы. Альдегиды и кетоны с одинаковым числом атомов углерода изомерны друг другу. Примеры изомерии углеродного скелета:
и положения функциональной группы:
В названии альдегидов по номенклатуре ИЮПАК появляется характерный суффикс - аль, в названии кетонов - он. Для первых членов гомологического ряда альдегидов и кетонов часто используются тривиальные названия: `"HCOH"` - формальдегид (или муравьиный альдегид), `"CH"_3"CH"="O"` ацетальдегид (или уксусный альдегид), `"CH"_3"CH"_2"CH"="O"` пропионовый альдегид, `"CH"_3"COCH"_3` - ацетон. Кетоны часто называют по рациональной номенклатуре: `"CH"_3"COCH"_3` - диметилкетон, `"CH"_3"COCH"_2"CH"_3` - метилэтилкетон и т. д.
Карбонильные соединения не образуют между собой водородных связей, поскольку в их молекулах нет атомов водорода с частичным положительным зарядом `delta+` на нём. Формальдегид – газ, остальные – жидкости или твёрдые вещества. Формальдегид, ацетальдегид и ацетон хорошо растворимы в воде, что можно объяснить установлением водородных связей между молекулами этих соединений и воды:
Увеличение числа углеродных атомов в углеводородном радикале приводит к снижению растворимости алифатических альдегидов и кетонов.
1. Окисление спиртов (см. «Спирты», химические свойства, мягкое окисление).
2. Гидратация алкинов (см. «Алкины», химические свойства, реакция Кучерова).
3. Простейший кетон – ацетон – получают кумольным методом вместе с фенолом (см. «Фенолы», получение из кумола)
4. Щелочной гидролиз геминальных (содержащих два галогена около одного углеродного атома) дигалогеналканов. Образующиеся неустойчивые диолы претерпевают самопроизвольную дегидратацию с образованием альдегидов, если гидроксильные группы оказались у концевого атома:
`"CH"_3-"CH"_2-"CHCl"_2+2"NaOH"->`
`->"CH"_3-"CH"_2-"CH"("OH")_2+2"NaCl"->`
`->"CH"_3-"CH"_2-"CH"="O"+"H"_2"O"`
и кетонов – в остальных случаях:
5. Каталитическое дегидрирование спиртов (промышленный способ). Процесс осуществляется пропусканием паров спирта над медью, никелем или оксидом цинка. При дегидрировании первичных спиртов получают альдегиды, вторичных – кетоны:
$$ {\mathrm{CH}}_{3}-{\mathrm{CH}}_{2}\mathrm{OH}\underset{\mathrm{t}°}{\overset{\mathrm{Cu}}{\to }}{\mathrm{CH}}_{3}\mathrm{CH}=\mathrm{O}+{\mathrm{H}}_{2}\uparrow $$.
6. Окисление углеводородов кислородом воздуха в присутствии катализаторов (промышленный метод для получения низших альдегидов и кетонов):
$$ {\mathrm{CH}}_{4}+{\mathrm{O}}_{2}\stackrel{\mathrm{t}°}{\to }\mathrm{HCH}=\mathrm{O}+{\mathrm{H}}_{2}\mathrm{O} (\mathrm{кат}. \mathrm{Cu} \mathrm{или} \mathrm{Ag})$$
`2"CH"_2="CH"_2+"O"_2->2"CH"_3"CH"="O" ("кат". "PdCl"_2 "и" "CuCl"_2)`
`2"CH"_3-"CH"="CH"_2+"O"_2->2"CH"_3"COCH"_3 ("кат". "PdCl"_2 "и" "CuCl"_2)`.
7. Декарбоксилирование кальциевых или бариевых солей карбоновых кислот приводит к образованию кетонов:
Характерными реакциями для альдегидов являются: нуклеофильное присоединение `"A"_"N"`, реакции окисления, полимеризация и поликонденсация. Кетоны менее активны в реакциях `"A"_"N"`. Это объясняется тем, что у кетонов в молекуле не один, а два углеводородных радикала, присоединённых к карбонильной группе. Электронодонорные группы уменьшают `delta+` на атоме углерода карбонила, снижая реакционную способность кетонов в реакциях нуклеофильного присоединения. Кетоны окисляются с большим трудом, при этом происходит расщепление углеродного скелета; они не реагируют c `"Cu"("OH")_2` и `["Ag"("NH"_3)_2]"OH"`. Кетоны не вступают в реакции полимеризации.
Важнейшие реакции `"A"_"N"`
1. Присоединение циановодорода (нуклеофил - `"CN"^-`)
`"CH"_3-"CH"="O"+"H"-"CN"->"CH"_3-"CH"("CN")-"OH"`.
2. Реакция с гидросульфитом натрия (нуклеофил – ион `"SO"_3"Na"^-`)
`"CH"_3-"CH"="O"+"NaHSO"_3->"CH"_3-"CH(OH)"-"SO"_3"Na"`.
Эта реакция позволяет не только обнаружить карбонильные соединения, но и выделить альдегиды и кетоны, поскольку сульфопроизводное выпадает в осадок в избытке гидросульфита.
3. Взаимодействие со спиртами в присутствии каталитических количеств кислоты:
4. Присоединение реактива Гриньяра. Галогеноводороды при взаимодействии с магнием в растворе абсолютного диэтилового эфира образуют магнийорганическое соединение или реактивы Гриньяра:
`"R"-"X"+"Mg"->"R"-"Mg"-"X"`.
Присоединение реактивов Гриньяра к карбонильным соединениям с последующим гидролизом промежуточных алкоголятов магния приводит к спиртам:
5. Присоединение воды. Гидратация оксосоединений – обратимая реакция. Устойчивость образующихся гидратов определяется величиной `delta+` на атоме углерода группы и её пространственным окружением. Так, формальдегид и трихлорацеталь гидратированы практически нацело, ацетальдегид – наполовину, а ацетон практически не гидратирован:
Окислительно-восстановительные реакции
1. Гидрирование (восстановление) карбонильных соединений (см. «Спирты», получение). В лабораторных условиях для восстановления используют `"LiAlH"_4`.
2. Реакция «серебряного зеркала»:
$$\mathrm{R}-\mathrm{C}\mathrm{H}=\mathrm{O}+2[\mathrm{A}\mathrm{g}{\mathrm{N}\mathrm{H}}_{3}{}_{2}]\mathrm{O}\mathrm{H}\stackrel{\mathrm{t}°}{\to }{\mathrm{R}\mathrm{C}\mathrm{O}\mathrm{O}\mathrm{N}\mathrm{H}}_{4}+2\mathrm{A}\mathrm{g}\downarrow +3{\mathrm{N}\mathrm{H}}_{3}\uparrow +{\mathrm{H}}_{2}\mathrm{O}$$.
Выделяющееся серебро осаждается тонким слоем на стенках пробирки, образуя зеркальный налёт. Это – качественная реакция на альдегиды (формальдегид в этой реакции окисляется до `"CO"_2`). Раньше эту реакцию использовали для изготовления зеркал, ёлочных игрушек.
3. Окисление гидроксидом меди (II) также является качественной реакцией на альдегиды. При нагревании свежеосаждённого `"Cu"("OH")_2` вначале образуется жёлтый осадок `"СuOH"`, который разлагается с образованием оксида меди (I) красного цвета:
4. Окисление альдегидов раствором перманганата калия:
а) в кислой среде:
б) в щелочной среде:
в) в нейтральной среде:
Реакции поликонденсации и полимеризации
1. Реакции полимеризации характерны для низших альдегидов:
$$ {\mathrm{nH}}_{2}\mathrm{CO}\stackrel{\mathrm{кат}}{\to }[-{\mathrm{CH}}_{2}-\mathrm{O}-{]}_{\mathrm{n}}$$
В результате реакции получается твёрдое вещество – пара-формальдегид. Кетоны не подвергаются полимеризации.
2. Формальдегид вступает в реакцию поликонденсации с фенолом. В результате реакции каждая молекула формальдегида связывает между собой две молекулы фенола и происходит отщепление одной молекулы воды:
Процесс поликонденсации протекает с образованием линейного полимера, в котором молекулы формальдегида присоединяются в орто-положение:
Возможно образование и более сложных «сшитых» полимерных соединений.
- органические соединения, в молекулах которых содержится одна или несколько карбоксильных групп – `"COOH"`.
По числу карбоксильных групп карбоновые кислоты делят на монокарбоновые, или одноосновные, дикарбоновые, или двухосновные и т. д. В зависимости от строения углеводородного радикала, с которым связана карбоксильная группа, карбоновые кислоты бывают
алифатические:
`"HCOOH"` | `"CH"_3-"CH"_2-"COOH"` | `"CH"_2="CH"-"COOH"` | `"HOOC"-"COOH"` |
муравьиная | пропионовая | акриловая | щавелевая |
ароматические:
циклические:
Возможны следующие виды изомерии:
1. Изомерия углеродного скелета:
2. Межклассовая изомерия кислот со сложными эфирами:
3. У гетерофункциональных (содержат наряду с карбоксильной другие функциональные группы) кислот имеется изомерия, связанная с положением функциональной группы, например, существует `2` изомера у хлорпропионовой кислоты:
4. Карбоновые кислоты, имеющие атом углерода, связанный с четырьмя различными заместителями, обладают оптической изомерией, например, существуют оптические изомеры у `α`-аминопропионовой кислоты:
В основе названий карбоновых кислот лежат названия соответствующих углеводородов. Наличие карбоксильной группы отражается суффиксом -ов, окончанием -ая и словом «кислота». Углеродную цепь нумеруют начиная с атома углерода карбоксильной группы, например:
$$\stackrel{5}{\mathrm{C}}{\mathrm{H}}_{3}-\stackrel{4}{\mathrm{C}}{\mathrm{H}}_{2}-\stackrel{3}{\mathrm{C}}\mathrm{H}=\stackrel{2}{\mathrm{C}}\mathrm{H}-\stackrel{1}{\mathrm{C}}\mathrm{O}\mathrm{O}\mathrm{H}-пентен‐2‐овая \text{ }кислота.$$
Для органических кислот чаще используют тривиальные названия, которые обычно указывают на источник выделения кислот, а не на химическую структуру.
Первые три члена гомологического ряда предельных одноосновных карбоновых кислот (муравьиная, уксусная и пропионовая) – жидкости, хорошо растворимые в воде. Средние представители этого гомологического ряда – вязкие «маслообразные» жидкости, начиная с `"C"_(10)` - твёрдые вещества. Карбоновые кислоты имеют аномально высокие температуры кипения из-за наличия межмолекулярных водородных связей и существуют в виде циклических димеров:
Между двумя молекулами могут образоваться две водородные связи, что и обуславливает сравнительно большую прочность ассоциатов. Образование водородных связей с молекулами воды объясняет растворимость кислот в этом растворителе, причём растворимость понижается с возрастанием молекулярной массы веществ, т. е. с увеличением в его молекуле углеводородного радикала (гидрофобного фрагмента).
Реакции окисления
1. Окисление альдегидов (см. «Карбонильные соединения», химические свойства, реакции окисления).
2. Окисление первичных спиртов (см. «Спирты», химические свойства, реакции окисления в жёстких условиях: сильные окислители, кислая среда, нагревание).
3. Окисление алкинов (см. «Алкины», химические свойства, окисление подкисленным раствором `"KMnO"_4`).
4. Окисление алкенов (см. «Алкены», химические свойства, жёсткое окисление: нагревание с подкисленным раствором `"KMnO"_4`).
Реакции гидролиза
1. Гидролиз галогензамещённых углеводородов
При гидролизе тригалогенпроизводных углеводородов `("R"-"CCl"_3)`, в молекулах которых атомы галогена находятся при одном и том же углеродном атоме, образуется неустойчивый триол `("R"-"C"("OH")_3)`, который претерпевает самопроизвольную дегидратацию с образованием карбоновой кислоты:
`"CH"_3-"CH"_2-"CCl"_3+3"NaOH"->`
`->"CH"_3-"CH"_2-"COOH"+3"NaCl"+"H"_2"O"`
2. Гидролиз сложных эфиров (см. «Сложные эфиры», химические свойства»)
3. Гидролиз ангидридов кислот (общая формула ангидридов `("RCO")_2"O"`)
4. Гидролиз хлорангидридов карбоновых кислот:
5. Гидролиз амидов (в кислой среде)
6. Гидролиз нитрилов кислот. Использование нитрилов позволяет нарастить углеродную цепь на один атом:
`"CH"_3-"CH"_2-"Br"+"NaCN"->"CH"_3-"CH"_2-"C"-="N"+"NaBr"`.
Образующийся нитрил пропионовой кислоты при нагревании гидролизуется:
`"CH"_3-"CH"_2-"C"-="N"+2"H"_2"O"->"CH"_3-"CH"_2-"COONH"_4`.
Пропионовую кислоту получают при подкислении раствора пропионата аммония:
`"CH"_3-"CH"_2-"COONH"_4+"HCl"->"CH"_3-"CH"_2-"COOH"+"NH"_4"CL"`.
Суммарное уравнение гидролиза в кислой среде выглядит следующим образом:
`"CH"_3-"CH"_2-"C"-="N"+2"H"_2"O"+"HCL"->`
`->"CH"_3-"CH"_2-"COOH"+"NH"_4"Cl"`.
Использование реактивов Гриньяра и `"CO"_2`
`"R"-"MgBr"+"CO"_2->"R"-"COO"-"MgBr"`.
Гидролиз образующегося промежуточного продукта минеральными кислотами даёт целевое вещество – карбоновую кислоту c числом атомов на один больше, чем в исходной молекуле реактива Гриньяра:
`"R"-"COO"-"MgBr"+"H"_2"O"->"R"-"COOH"+"MgOHBr"`
Специфические способы получения
1. Муравьиную кислоту получают нагреванием `"CO"` с порошкообразным `"NaOH"` под давлением и обработкой полученного формиата натрия сильной кислотой:
`"NaOH"+"CO"->"HCOONa"`;
`2"HCOONa"+"H"_2"SO"_4->2"HCOOH"+"Na"_2"SO"_4`.
2. Уксусную кислоту получают окислением бутана (см. «Алканы», химические свойства, окисления бутана кислородом воздуха).
3. Бензойную кислоту получают окислением алкилбензолов (см. «Ароматические углеводороды», жёсткое окисление толуола).
Кислотные свойства карбоновых кислот
Если пропустить электрический ток через растворы уксусной и серной кислот с одинаковой концентрацией, то окажется, что раствор уксусной кислоты проводит электрический ток намного слабее. Это доказывает, что уксусная кислота является слабой кислотой. Карбоновые кислоты являются слабыми электролитами. Причём по мере повышения молекулярной массы степень их диссоциации понижается. Только муравьиная кислота относится к кислотам средней силы.
В водных растворах карбоновые кислоты диссоциируют на ионы:
$$ \mathrm{RCOOH}\rightleftarrows {\mathrm{H}}^{+}+{\mathrm{RCOO}}^{-}$$.
Однако равновесие этого процесса сдвинуто влево. Все карбоновые кислоты – слабые электролиты (`"HCOOH"` – средней силы). Природа заместителя `"R"` достаточно сильно влияет на силу кислот. Электронодонорные группы (алкильные группы и др.) повышают электронную плотность на атоме углерода –`"COOH"` группы, уменьшают тем самым частично положительный заряд на нем. Следствием этого является уменьшение поляризации связи `"O"–"H"` (усиление её прочности) и ослабление силы кислоты. Электроноакцепторные группы (фтор, хлор, винил, фенил и др.) наоборот повышают кислотные свойства. Ниже представлен ряд кислот по мере возрастания кислотных свойств:
Подобно минеральным кислотам, карбоновые кислоты реагируют с металлами, основными и амфотерными оксидами, основаниями, солями, вытесняя более слабые кислоты:
`2"R"-"COOH"+"Zn"->("R"-"COO")_2"Zn"+"H"_2`
`2"R"-"COOH"+"BaO"->("R"-"COO")_2"Ba"+"H"_2"O"`
`"R"-"COOH"+"NaOH"->"R"-"COONa"+"H"_2"O"`
`"R"-"COOH"+"NaHCO"_3->"R"-"COONa"+"H"_2"O"+"CO"_2`
Поскольку карбоновые кислоты слабые, их соли в водном растворе легко гидролизуются:
$$ {\mathrm{CH}}_{3}\mathrm{COOK}+{\mathrm{H}}_{2}\mathrm{O}\rightleftarrows {\mathrm{CH}}_{3}\mathrm{COOH}+\mathrm{KOH}$$.
Сильные неорганические кислоты вытесняют карбоновые кислоты из их солей:
`2"CH"_3"COONa"+"H"_2"SO"_4->2"CH"_3"COOH"+"Na"_2"SO"_4`
Взаимодействие ацетатов с сильной кислотой является качественной реакцией на ацетат-ионы. Признак её – появление запаха уксусной кислоты.
Образование функциональных производных
При замещении группы – `"OH"` в молекулах карбоновых кислот на другие группы образуются функциональные производные кислот. Общим свойством всех функциональных производных является то, что они могут быть получены из карбоновой кислоты и вновь в неё превращены при гидролизе.
1. Галогенангидриды получают действием галогенидов фосфора на кислоты:
`"CH"_3"COOH"+"PCl"_5->"CH"_3"COCl"+"POCl"_3+"HCl"`
2. Амиды кислот можно получить нагреванием соответствующих солей аммония:
$$ {\mathrm{CH}}_{3}{\mathrm{COONH}}_{4}\stackrel{\mathrm{t}°}{\to }{\mathrm{CH}}_{3}{\mathrm{CONH}}_{2}+{\mathrm{H}}_{2}\mathrm{O}$$
Кроме того, амиды могут быть получены при взаимодействии хлорангидридов или сложных эфиров с аммиаком:
`"CH"_3"COCl"+2"NH"_3->"CH"_3"CONH"_2+"NH"_4"Cl"`
`"CH"_3"COOCH"_3+"NH"_3->"CH"_3"CONH"_2+"CH"_3"OH"`
3. Ангидриды кислот получают действием на кислоты водоотнимающих средств:
4. Cложные эфиры образуются при нагревании кислоты и спирта в присутствии серной кислоты (обратимая реакция этерификации):
5. Нитрилы кислот могут быть получены реакцией галогеналканов с цианидом щелочного металла (см. получение кислот, п. 6 ), а также при нагревании амидов:
$$ {\mathrm{CH}}_{3}{\mathrm{CONH}}_{2}\stackrel{\mathrm{t}°}{\to }{\mathrm{CH}}_{3}\mathrm{CN}+{\mathrm{H}}_{2}\mathrm{O}$$
Реакции с участием углеводородного радикала
1. Галогенирование кислот в присутствии красного фосфора даёт `α`-галогензамещённые кислоты:
2. Непредельные карбоновые кислоты способны к реакциям присоединения по двойной связи:
`"CH"_2="CH"-"COOH"+"H"_2`$$ \stackrel{\mathrm{Pt},t°,p}{\to }$$`"CH"_3-"CH"_2-"COOH"`
`"CH"_2="CH"-"COOH"+"H"_2"O"`$$ \stackrel{{\mathrm{H}}^{+}}{\to }$$`"HO"-"CH"_2-"CH"_2-"COOH"`
Последняя реакция протекает против правила Марковникова.
3. Ненасыщенные карбоновые кислоты склонны к реакции полимеризации:
Окислительно-восстановительные реакции
Насыщенные карбоновые кислоты устойчивы к действию окислителей. Исключение составляет муравьиная кислота, которая вступает в реакцию «серебряного зеркала», реагирует с гидроксидом меди (II), хлором и другими окислителями:
`"HCOOH"+2["Ag"("NH"_3)_2]"OH"->2"Ag"+"NH"_4"HCO"_3+3"NH"_3+"H"_2"O"`
`"HCOOH"+2"Cu"("OH")_2->"Cu"_2"O"+"CO"_2+3"H"_2"O"`
`"HCOOH"+"Cl"_2->"CO"_2+2"HCl"`
В атмосфере кислорода карбоновые кислоты сгорают до углекислого газа и воды. Реакция в общем виде для предельных одноосновных кислот выглядит таким образом:
`"C"_n"H"_(2n+1)"COOH"+(3n+1)//2"O"_2->(n+1)"CO"_2+(n+1)"H"_2"O"`
Восстановление карбоновых кислот до соответствующих спиртов идёт существенно труднее, чем альдегидов. Такие реакции возможны только под действием сильных восстановителей, например, используя алюмогидрид лития `("LiAlH"_4)` в безводном эфире.
Превращение карбоновых кислот в алканы происходит в процессе электролиза:
$$ 2{\mathrm{CH}}_{3}{\mathrm{CH}}_{2}\mathrm{COOK}+2{\mathrm{H}}_{2}\mathrm{O}\stackrel{\mathrm{электролиз}}{\to }$$
$$\stackrel{электролиз}{\to }{\mathrm{C}\mathrm{H}}_{3}{\mathrm{C}\mathrm{H}}_{2}{\mathrm{C}\mathrm{H}}_{2}{\mathrm{C}\mathrm{H}}_{3}+2{\mathrm{C}\mathrm{O}}_{2}\uparrow +{\mathrm{H}}_{2}\uparrow +2\mathrm{K}\mathrm{O}\mathrm{H}$$
Реакции декарбоксилирования
При сплавлении солей карбоновых кислот со щелочами происходит разрыв связи `"C"-"C"` в углеродном скелете кислоты и отщепление карбоксильной группы:
$$ {\mathrm{C}}_{4}{\mathrm{H}}_{9}-\mathrm{COOK}+\mathrm{KOH}\stackrel{\mathrm{t}°}{\to }{\mathrm{C}}_{4}{\mathrm{H}}_{10}+{\mathrm{K}}_{2}{\mathrm{CO}}_{3}$$
Прокаливание кальциевых или бариевых солей карбоновых кислот приводит к образованию кетона и карбоната металла (см. способы получения кетонов).
Двухосновные карбоновые кислоты при нагревании легко отщепляют молекулу `"CO"_2`:
$$ \mathrm{HOOC}-{\mathrm{CH}}_{2}-{\mathrm{CH}}_{2}-\mathrm{COOH}\stackrel{\mathrm{t}°}{\to }{\mathrm{CH}}_{3}-{\mathrm{CH}}_{2}-\mathrm{COOH}+{\mathrm{CO}}_{2}\uparrow $$.
Среди функциональных производных карбоновых кислот особое место занимают
- производные карбоновых кислот, в молекулах которых атом водорода в карбоксильной группе замещён на углеводородный радикал. Общая формула сложных эфиров: где `R` и `R^'`- углеводородные радикалы.
Названия сложных эфиров происходят от названий кислоты и углеводородного радикала, заместившего водород. В качестве корня используют название кислоты с суффиксом -ат, в виде приставки приводят название радикала:
Для сложных эфиров характерна структурная изомерия
а) изомерия кислотных и спиртовых радикалов: пропилацетат изомерен изопропилацетату,
б) изомерия положения сложноэфирной группы в молекуле: пропилацетат изомерен этилпропионату и т. д.
Межклассовая изомерия сложных эфиров уже упоминалась в разделе «Карбоновые кислоты».
Сложные эфиры представляют собой в основном летучие бесцветные жидкости, нерастворимые в воде и обладающие сравнительно невысокими температурами кипения. Объясняется это тем, что между молекулами сложных эфиров отсутствуют водородные связи. Сложные эфиры низших карбоновых кислот и низших спиртов имеют ароматные фруктовые запахи.
1. Реакцией этерификации (см. Химические свойства спиртов и карбоновых кислот).
2. Взаимодействием функциональных производных карбоновых кислот (ангидридов, амидов, галогенангидридов) со спиртами:
1. Гидролиз под действием воды – реакция обратная реакции этерификации:
Для того, чтобы гидролиз протекал необратимо, его проводят в присутствии щелочи:
`"CH"_3"COOC"_2"H"_5+"NaOH"->"CH"_3"COONa"+"C"_2"H"_5"OH"`
2. Сложные эфиры реагируют с аммиаком, образуя амиды (см. «Карбоновые кислоты», химические свойства, получение амидов).
3. Взаимодействие со спиртами (реакция переэтерификации):
4. Сложные эфиры легко сгорают, образуя оксид углерода (IV) и воду:
`"CH"_3"CH"_2"COOCH"_3+5"O"_2->4"CO"_2+4"H"_2"O"`
Сложные эфиры широко распространены в природе. Приятный запах многих цветов и плодов в значительный степени обусловлен присутствием в них тех или иных сложных эфиров. Например, этиловый эфир масляной кислоты имеет запах ананасов, изоамиловый эфир уксусный кислоты – запах груши.
– сложные эфиры трёхатомного спирта глицерина и высших карбоновых кислот:
где `R′, R′′, R′′′` – углеводородные радикалы.
Карбоновые кислоты, входящие в состав жиров, называют жирными. Они содержат в молекуле от `10` атомов углерода и более, иногда в составе жиров встречаются и более простые кислоты (масляная, капроновая). Молекулы жиров содержат остатки как предельных, так и непредельных кислот, имеющих чётное число углеродных атомов и неразветвленное строение. В основном, в состав жиров входят три кислоты – предельные пальмитиновая: `"CH"_3-("CH"_2)_(14)-"COOH"`, стеариновая `"CH"_3-("CH"_2)_(16)-"COOH"` и непредельная олеиновая: `"CH"_3-("CH"_2)_7-"CH"="CH"-("CH"_2)_7-"COOH"`.
Строение простейших видов жиров было установлено благодаря трудам французских химиков Шевреля и Бертло. При нагревании жиров с водой в присутствии щёлочи они получили глицерин и карбоновые кислоты – стеариновую, олеиновую. На основании этих опытов был сделан вывод, что жиры образованы глицерином и высшими жирными кислотами. Позднее установлено, что в природных жирах присутствуют остатки не одной, а нескольких кислот. Позже доказано, что в жирах присутствуют остатки только линейных изомеров высших жирных кислот.
Жиры, образованные предельными кислотами, – твёрдые вещества при комнатной температуре. Как правило, это жиры животного происхождения. Жиры, в составе которых есть непредельные кислоты,– жидкие, они называются маслами. Температура плавления жира зависит от его состава – чем больше в его составе предельных кислот, тем выше его температура плавления. Все жиры нерастворимы в воде и хорошо растворимы в органических растворителях.
Синтез жиров из глицерина и карбоновых кислот отвечает следующему уравнению:
1. Гидролиз (омыление) жиров происходит под действием воды (обратимо) или щелочей (необратимо):
При щелочном гидролизе образуются соли высших жирных кислот, называемые мылами.
2. Гидрогенизация жиров – присоединение водорода к остаткам непредельных кислот, входящих в состав жиров. При этом жиры из жидких превращаются в твёрдые:
3. Бромирование жиров. Так, для сложного эфира глицерина и олеиновой кислоты реакция обесцвечивания бромной воды записывается следующим образом:
4. При длительном хранении под действием влаги, кислорода воздуха, света и тепла жиры приобретают неприятный запах и вкус. Этот процесс называется «прогорканием» и обусловлен появлением в жирах продуктов их превращения: свободных жирных кислот, гидроксикислот, альдегидов и кетонов.
– важный класс бифункциональных органических соединений, состав которых обычно выражается общей формулой `"C"_m("H"_2"O")_n(m,n>=3)`. В зависимости от строения углеводы подразделяют на моносахариды, олигосахариды и полисахариды.
Моносахариды – это углеводы, которые не гидролизуются с образованием более простых углеводов.
Олигосахариды – продукты конденсации двух или нескольких моносахаридов.
Полисахариды – природные высокомолекулярные вещества, образованные большим числом молекул моносахаридов.
Моносахариды
В молекулах моносахаридов может содержаться от трёх до шести атомов углерода. Моносахариды содержат функциональные группы: – `"OH"` и `>"C"="O"`. Среди них есть альдегидоспирты (альдозы) и кетоноспирты (кетозы).
Простейший моносахарид – глицериновый альдегид:
Остальные моносахариды по числу атомов углерода подразделяют не тетрозы `("C"_4"H"_8"O"_4)`, пентозы `("C"_5"H"_(10)"O"_5)` и гексозы `("C"_6"H"_(12)"O"_6)`. Ниже представлены примеры пентоз и гексоз:
Молекулы моносахаридов могут существовать не только в линейной (открытой), но и в циклической форме. Линейные молекулы вследствие вращения групп атомов вокруг простых связей `"C"-"C"` могут быть изогнуты в пространстве таким образом, что гидроксильная группа сблизится с атомом кислорода карбонильной группы, находящейся на противоположном конце молекулы. На предложенном рисунке изображены изогнутая открытая форма глюкозы и фруктозы:
Функциональные группы – спиртовая и карбонильная – взаимодействуют между собой: атом водорода `"OH"` – группы присоединяется к кислороду карбонила, а между первым атомом углерода `"C"(1)` (при циклизации глюкозы) и вторым `"C"(2)` (для фруктозы) и атомом кислорода образуется связь. Возникающая новая форма молекулы – шестичленный кислородсодержащий цикл (для глюкозы) и пятичленный (для фруктозы) – не содержит альдегидную группу. Образовавшуюся гидроксильную группу, связанную с атомом углерода называют гликозидным гидроксилом (помечен звёздочкой):
Гликозидный гидроксил может по-разному располагаться в пространстве. Это приводит к существованию двух циклических форм моносахаридов: альфа и бета. В `α`-форме гликозидный гидроксил и группа `"CH"_2"OH"` при `"C"(5)` находятся по разные стороны от плоскости кольца , а в `β`-форме - эти группы находятся по одну сторону от плоскости кольца:
В кристаллическом состоянии моносахариды находятся только в циклической форме (`α` или `β`), в водных растворах существует равновесие, которое сдвинуто в сторону циклических форм:
Шестичленные циклы называются пиранозными, а пятичленные – фуранозными. Ниже представлен фуранозный цикл для `β`-рибозы (в данном случае гликозидный гидроксил и группа `"CH"_2"OH"` при `"C"(4)` находятся по одну сторону от плоскости кольца):
Глюкоза, фруктоза и рибоза – белые кристаллические вещества, обладающие сладким вкусом, хорошо растворимые в воде.
Углеводы являются очень распространёнными природными соединениями, входят в состав растений и живых организмов. В растениях они образуются в результате фотосинтеза: `n"CO"_2+m"H"_2"O"->"C"_n("H"_2"O")_m+n"O"_2`.
Реакции с участием альдегидной группы
1. Глюкоза как альдегид обладает восстановительными свойствами и реагирует с аммиачным раствором оксида серебра (реакция «серебряного зеркала»), окисляясь при этом в соль глюконовой кислоты:
.
2. Аналогично протекает окисление глюкозы свежеприготовленным гидроксидом меди (II) при нагревании до глюконовой кислоты:
.
3. Глюкоза окисляется бромной водой до глюконовой кислоты:
.
4. Под действием водорода в присутствии катализатора альдегидная группа глюкозы восстанавливается в спиртовую группу, образуется шестиатомный спирт сорбит:
5. Окисление глюкозы разбавленной азотной кислотой (жёсткое окисление) приводит к образованию двухосновной глюкаровой кислоты:
.
Глюкоза не вступает в некоторые реакции альдегидов, например, в реакцию c `"NaHSO"_3`.
Реакции с участием гидроксильных групп
1. Образование гликозидов. При действии метилового спирта в присутствии газообразного хлороводорода с участием гликозидного гидроксила образуется простой эфир – метилгликозид:
2. Образование простых и сложных эфиров. Простые эфиры образуются при взаимодействии избытка алкилгалогенидов со спиртами:
Сложные эфиры глюкозы могут быть получены при взаимодействии глюкозы с карбоновыми кислотами и их функциональными производными: ангидридами и галогенангидридами кислот. При избытке ацилирующего агента все спиртовые группы молекулы переходят в сложноэфирные:
3. С гидроксидом меди (II) без нагревания глюкоза реагирует как многоатомный спирт и даёт характерное синее окрашивание (качественная реакция на многоатомные спирты).
Брожение
1. Спиртовое брожение под действием дрожжевых ферментов:
.
2. Молочнокислое брожение с образованием молочной кислоты под влиянием молочнокислых бактерий:
3. Маслянокислое брожение глюкозы приводит к образованию масляной кислоты:
.
Окисление глюкозы в живых системах
В живых организмах большая часть (примерно `70%`) глюкозы подвергается окислению кислородом воздуха (реакция обратна процессу фотосинтеза):
`"C"_6"H"_(12)"O"_6+6"O"_2->6"CO"_2+6"H"_2"O"+2816` кДж.
Выделяющаяся энергия используется для обеспечения процессов жизнедеятельности организма (сокращение мышц, синтез белков и т. д.).
Фруктоза обладает химическими свойствами многоатомных спиртов и кетонов. Как многоатомный спирт фруктоза даёт ярко-синее окрашивание с гидроксидом меди (II) без нагревания (см. хим. свойства глюкозы), образует простые и сложные эфиры. При восстановлении карбонильной группы образуется шестиатомный спирт. В отличие от глюкозы фруктоза не окисляется аммиачным раствором оксида серебра (не вступает в реакцию «серебряного зеркала») и бромной водой.
Поскольку рибоза является альдегидоспиртом, её химические свойства аналогичны свойствам глюкозы.
Дисахариды
Дисахариды состоят из двух остатков моносахаридов. Циклические молекулы моносахаридов соединены друг с другом простой эфирной связью. Важнейшие дисахариды – сахароза, мальтоза и лактоза. Все они являются изомерами и имеют формулу `"C"_(12)"H"_(22)"O"_(11)`.
Молекула сахарозы состоит из двух циклов: шестичленного (остатка `α`-глюкозы в пиранозной форме) и пятичленного (остатка `β`-фруктозы в фуранозной форме):
В молекуле сахарозы нет гликозидного гидроксила, поэтому её циклическая форма не может раскрываться и переходить в альдегидную форму. Сахароза не окисляется `"Cu"("OH")_2` и `["Ag"("NH"_3)_2]"OH"`, то есть является невосстанавливающим сахаром.
В молекуле мальтозы остатки циклической глюкозы соединены между собой `1,4`-гликозидной связью, то есть в образовании связи участвуют гидроксильные группы первого углеродного атома одной молекулы (гликозидный гидроксил) и четвёртого – другой (спиртовой гидроксил):
Мальтоза является восстанавливающим сахаром, поскольку один из остатков глюкозы сохранил гликозидный гидроксил.
Все перечисленные дисахариды – твёрдые кристаллические вещества, хорошо растворимые в воде и сладкие на вкус.
Определяются их строением.
1, Все они гидролизуются в кислой среде. Так например, сахароза при нагревании в воде в присутствии минеральной кислоты образует глюкозу и фруктозу:
,
а мальтоза даёт только глюкозу:
.
2, Восстанавливающие дисахариды (мальтоза, лактоза и др.) реагируют с окислителями по упрощённой схеме таким образом:
3, Сахароза реагирует с гидроксидом кальция с образованием растворимого в воде вещества – сахарата кальция.
4, Будучи многоатомным спиртом, сахароза даёт ярко-синее комплексное соединение – сахарат меди (II) при добавлении к её раствору медного купороса `("CuSO"_4*5"H"_2"O")`.
Полисахариды
Крахмал, а также целлюлоза относятся к третьей группе углеводов – полисахаридам. Общая формула полисахаридов `("C"_6"H"_(10)"O"_5)_n`. Все они состоят из циклических остатков глюкозы, различным образом соединённых друг с другом.
Молекулы крахмала состоят из линейных и разветвлённых цепей, содержащих остатки `α`-глюкозы. Фрагмент линейной структуры крахмала:
Линейная полимерная молекула (амилоза) свёрнута в спираль, куда могут вовлекаться другие молекулы, например, йода. Другая фракция крахмала (амилопектин) имеет разветвлённое строение, а её макромолекулы имеют шаровидную форму.
Молекулы целлюлозы состоят из линейных цепей, содержащих остатки `β`-глюкозы:
Основное отличие между крахмалом и целлюлозой заключается в структуре их молекул. Молекулы крахмала имеют линейную и разветвлённую структуру, молекулы целлюлозы – только линейную. Этим объяснятся то, что целлюлоза является основой волокон хлопка, льна и т. д., из которых производят ткани. Целлюлоза отличается от крахмала важным структурным параметром: она построена из β-формы глюкозидных звеньев, а крахмал – из `alpha`-формы. В первом случае считают, что между глюкозными звеньями имеется β-связь, а во втором – `alpha`-связь.
Линейное строение макромолекул целлюлозы, удерживаемых относительно друг друга межмолекулярными водородными связями с участием гидроксильных групп, обеспечивает ей повышенную механическую прочность.
Крахмал представляет собой белый порошок, не растворимый в холодной воде. В горячей воде набухает, образует клейстер. Целлюлоза – твёрдое волокнистое вещество, нерастворимое в воде.
1, Крахмал и целлюлоза подвергаются гидролизу в кислой среде при нагревании:
.
Целлюлоза, в отличие от крахмала, не усваивается организмом, поскольку не подвергается ферментативному гидролизу. Она гидролизуется при длительном кипячении в водных растворах сильных кислот.
2, Крахмал даёт интенсивное синее окрашивание с йодом – это качественная реакция на крахмал и на йод.
3, Целлюлоза образует сложные эфиры с азотной кислотой, уксусной кислотой или уксусным ангидридом (это более сильное этерифицирующее средство, чем уксусная кислота):
Если состав целлюлозы записать таким образом: `["C"_6"H"_7"O"_2("OH")_3]_n`, выделив три гидроксильные группы, которые участвуют в образовании сложноэфирных связей, то уравнение реакции примет вид:
`["C"_6"H"_7"O"_2("OH")_3]_n+3n"HO"-"NO"_2->["C"_6"H"_7"O"_2("ONO"_2)_3]_n+3n"H"_2"O"`.
4, Крахмал и целлюлоза не вступают в реакцию «серебряного зеркала».
это соединения, в состав которых входят только два элемента – углерод и водород. Общая формула углеводородов – `"C"_x"H"_y`. В соответствии со строением углеродного скелета углеводороды делят на ациклические (с открытой углеродной цепью) и циклические (с замкнутой углеродной цепью).
Углеводороды, в молекулах которых атомы углерода связаны только `σ`-связями `"C" - "C"` и `"C" - "H"`, относятся к предельным углеводородам (алканам). Другое историческое название алканов – парафины. Общая формула гомологического ряда алканов `"C"_n"H"_(2n+2)`.
Простейшие представители этого ряда:
Каждый атом углерода в алканах находится в состоянии `"sp"^3`-гибридизации и образует четыре `σ`-связи. Длина связи `"C" – "C"` в алканах равна `0,154` нм. Энергия связей `"C"- "H"` в алканах неодинакова: прочнее всего атомы водорода связаны с первичными атомами углерода в группах `"CH"_3`, затем – со вторичными в группах `"CH"_2`, и наименее – с третичными атомами углерода в группах `"CH"`. Углеродный скелет молекул может быть линейным или разветвлённым. Алканы первого типа называются линейными или нормальными, а вторые – разветвлёнными или изоструктурными.
Независимо от числа углеродных атомов в цепи всегда сохраняется тетраэдрическая ориентация связей. Поэтому реальная цепь углеродных атомов никогда не может быть линейной. Она всегда имеет зигзагообразный характер:
В реальных молекулах атомы и группы атомов свободно вращаются вокруг `σ`-связи. В результате углеродная цепь может принимать различные пространственные формы:
При вращении вокруг `σ`-связей в молекуле пентана образовались две формы молекулы: одна более изогнутая, чем исходный зигзаг, а вторая имеет почти кольцеобразную структуру. При вращении фрагментов молекулы вокруг `σ`-связи порядок соединения атомов друг с другом не меняется. Подобное вращение атомов в молекулах является результатом теплового движения, если нет препятствующих этому факторов. Наиболее энергетически выгодна вытянутая форма молекулы, в которой фрагменты больше всего удалены друг от друга и испытывают наименьшее отталкивание групп и связей. Разновидности пространственных структур, вызванные вращением вокруг `σ`-связей, называют конформациями. Они легко претерпевают взаимные переходы. Поэтому различные конформации не могут быть разделены.
Молекулы алканов отличаются друг от друга на группу `"CH"_2` – при переходе от одного члена ряда к следующему. Данная группа называется метиленовой группой. Алканы составляют совокупность подобных по структуре, а также по химическим свойствам соединений – гомологов, которая получила название гомологического ряда.
Если от алкана «отнять» один атом водорода, то образуется одновалентный остаток – радикал. Названия некоторых углеводородных ради-калах приведены в таблице.
Общее (родовое) название предельных углеводородов – алканы.
По систематической номенклатуре основой для названия служит наиболее длинная углеродная цепь, а все другие фрагменты молекулы рассматриваются как заместители. Приведём пример структурной формулы `2,5`-диметил-`3`-изопропил-`5`-этилгептана:
Данный алкан имеет в качестве главной - цепь, содержащую `7` атомов углерода. При втором и пятом углероде находятся заместители – метилы, при пятом атоме углерода – этил, а при третьем – изопропил.
По рациональной номенклатуре алканы рассматривают как производные простейшего углеводорода – метана, в молекуле которого один или несколько атомов водорода замещены на радикалы. Эти радикалы называют в порядке их усложнения. Если заместили одинаковые, то используют приставки умножения (ди, три, тетра) и добавляют слово «метан».
При обычных условиях алканы `"C"_1-"C"_4 -` газы, `"C"_5-"C"_17 -` жидкости, начиная с `"C"_18` - твёрдые вещества. Алканы практически нерастворимы в воде, но хорошо растворимы в неполярных растворителях (бензол и др.) Температуры кипения алканов с разветвлённой цепью ниже, чем соединений нормального строения. Алканы – горючие вещества.
Основные природные источники алканов – нефть и природный газ. Различные фракции нефти содержат алканы от `"C"_5"H"_12` до `"C"_30"H"_62`. Природный газ состоит из метана `(96%)` с примесью этана и пропана.
Из синтетических методов получения алканов можно выделить следующие:
1. Гидрирование непредельных углеводородов в присутствии металлических катализаторов (`"Ni"`, `"Pd"`):
$$ {\mathrm{CH}}_{3}-\mathrm{CH}={\mathrm{CH}}_{2}+{\mathrm{H}}_{2}\underset{\mathrm{t}°\mathrm{C}}{\overset{\mathrm{кат}.}{\to }}{\mathrm{CH}}_{3}-{\mathrm{CH}}_{2}-{\mathrm{CH}}_{3}$$
2. Обработка галогеналканов натрием (реакция Вюрца):
`2"C"_2"H"_5"Br"+2"Na" -> "C"_2"H"_5 - "C"_2"H"_5+2"NaBr"`
Эта реакция пригодна только для получения алканов с симметричным углеродным скелетом, так как при введении в реакцию Вюрца двух разных галогеналканов результатом будет смесь трех продуктов. Так, если обработать натрием смесь бромметана `"CH"_3"Br"` и бромэтана `"C"_2"H"_5"Br"`, то продуктами будут этан `"CH"_3-"CH"_3`, пропан `"CH"_3-"C"_2"H"_5` и бутан `"C"_2"H"_5-"C"_2"H"_5`.
3. Сплавление солей карбоновых кислот с избытком щёлочи с образованием алканов, содержащих на один атом углерода меньше, чем исходная соль (реакция декарбоксилирования):
$$ {\mathrm{C}}_{2}{\mathrm{H}}_{5}\mathrm{COOK}+\mathrm{KOH}\stackrel{\mathrm{t}°}{\to }{\mathrm{C}}_{2}{\mathrm{H}}_{6}+{\mathrm{K}}_{2}{\mathrm{CO}}_{3}$$
4. Алканы симметричного строения могут быть получены в результате электролиза растворов солей карбоновых кислот (реакция Кольбе):
5. Промышленный способ получения на металлическом катализаторе (`"Ni"`, `"Co"`) (синтез Фишера-Тропша):
$$ n\mathrm{CO}+\left(2n+1\right){\mathrm{H}}_{2}\underset{\mathrm{t}°}{\overset{\mathrm{кат}.}{\to }}{\mathrm{C}}_{n}{\mathrm{H}}_{2n+2}+n{\mathrm{H}}_{2}\mathrm{O}$$
6. В лабораторных условиях простейший алкан – метан можно получить при гидролизе карбида алюминия:
`"Al"_4"C"_3+12"H"_2"O"->3"CH"_4+4"Al(OH)"_3`
Метан можно получить при нагревании углерода в атмосфере водорода до `400-500^@"С"` при повышенном давлении в присутствии катализатора $$ \left(\mathrm{C}+2{\mathrm{H}}_{2}\underset{\mathrm{t}°,\mathrm{p}}{\overset{\mathrm{кат}.}{\to }}{\mathrm{CH}}_{4}\right)$$.
В обычных условиях алканы химически инертны, что объясняется высокой прочностью `σ`-связей `"C" - "C"` и `"C" - "H"`. Поэтому алканы не вступают в реакции присоединения. При обычных условиях алканы проявляют высокую химическую устойчивость. По этой причине алканы получили название парафинов.
Основные химические превращения алканов идут только при сообщении им достаточно высокой энергии. Ковалентные связи не склонны к ионному разрыву, но способны расщепляться гомолитически под действием активных свободных радикалов. При этом может произойти или разрыв связи `"C"–"H"` с последующим замещением атома водорода на другой атом или группу атомов, или же разрыв молекулы по связи `"C"–"C"`. Несмотря на то, что энергии этих связей равны соответственно `415` – `420` кДж/моль (для первичных атомов углерода) и `350` кДж/моль, разрыв предпочтительнее идёт по связи `"C"–"H"`, т. к. данная связь более доступна для реагента.
Поэтому алканы вступают в реакции, протекающие по механизму радикального замещения `"S"_"R"` (от англ. substitution radicalic).
1. Галогенирование. Алканы реагируют с хлором и бромом под действием УФ излучения или высокой температуры. Реакция протекает по цепному механизму, который характеризуется следующими стадиями:
а) инициирование цепи: `"Cl"_2->2"Cl"*`
б) рост цепи: `"Cl"*+"CH"_4->"HCl"+"CH"_3*`
`"CH"_3*+"Cl"_2->"CH"_3"Cl"+"Cl"*`
в) обрыв цепи: `"Cl"*+"Cl"* ->"Cl"_2`
`"Cl"*+"CH"_3* ->"CH"_3"Cl"`
`"CH"_3*+"CH"_3* ->"C"_2"H"_6`.
Суммарное уравнение реакции:
$$ {\mathrm{CH}}_{4}+{\mathrm{Cl}}_{2}\stackrel{\mathrm{hv}/\mathrm{t}°}{\to }{\mathrm{CH}}_{3}\mathrm{Cl}+\mathrm{HCl}$$.
Если галоген взят в избытке, то реакция не заканчивается образованием моногалогенпроизводного, а происходит последовательное замещение атомов водорода в алкане на атомы галогена. Так, при радикальном хлорировании метана избытком хлора продуктами реакции будут `"CH"_3"Cl"`, `"CH"_2"Cl"_2`, `"CHCl"_3` и `"CCl"_4`.
Как правило, селективность (избирательность) радикальных реакций тем больше, чем мягче условия их протекания (например, ниже температура) и меньше активность реагента. Так, в одинаковых условиях проведения реакции атомы брома обладают большей избирательность, чем атомы хлора:
2. Нитрование (реакция Коновалова). При действии разбавленной азотной кислоты на алканы при `140^@` под давлением протекает реакция `"S"_"R"` с замещением водорода на нитрогруппу:
$$ {\mathrm{CH}}_{3}-{\mathrm{CH}}_{3}+{\mathrm{HNO}}_{3}\stackrel{\mathrm{t}°,\mathrm{p}}{\to }{\mathrm{CH}}_{3}-{\mathrm{CH}}_{2}-{\mathrm{NO}}_{2}+{\mathrm{H}}_{2}\mathrm{O}$$.
При радикальных реакциях в первую очередь замещаются атомы водорода у третичных, затем у вторичных и в последнюю очередь у первичных атомов углерода.
3. Изомеризация. Нормальные алканы при определённых условиях могут превращаться в алканы с разветвленной цепью:
4. Крекинг – это гомолитический разрыв связей `"C" - "C"`, который протекает при нагревании под действием катализаторов. При крекинге высших алканов образуются алкены и низшие алканы, при крекинге метана и этана образуется ацетилен:
$$ {\mathrm{C}}_{6}{\mathrm{H}}_{14}\underset{\mathrm{t}°}{\overset{\mathrm{кат}.}{\to }}{\mathrm{C}}_{2}{\mathrm{H}}_{6}+{\mathrm{C}}_{4}{\mathrm{H}}_{8}$$,
$$ 2{\mathrm{CH}}_{4}\stackrel{1500°\mathrm{C}}{\to }{\mathrm{C}}_{2}{\mathrm{H}}_{2}+3{\mathrm{H}}_{2}$$,
$$ {\mathrm{C}}_{2}{\mathrm{H}}_{6}\stackrel{1200°\mathrm{C}}{\to }{\mathrm{C}}_{2}{\mathrm{H}}_{2}+2{\mathrm{H}}_{2}$$.
5. Окисление. При мягком окислении метана кислородом воздуха (`200^@"C"`, катализатор) могут быть получены `"CH"_3"OH"`, `"HCOH"`, `"HCOOH"`. Мягкое окисление бутана дает уксусную кислоту:
$$ 2{\mathrm{C}}_{4}{\mathrm{H}}_{10}+5{\mathrm{O}}_{2}\underset{\mathrm{t}°}{\overset{\mathrm{кат}.}{\to }}4{\mathrm{CH}}_{3}\mathrm{COOH}+2{\mathrm{H}}_{2}\mathrm{O}$$.
На воздухе алканы сгорают до `"CO"_2` и `"H"_2"O"`:
`"C"_n"H"_(2n+2)+((3n+1))/2 "O"_2 -> n"CO"_2+(n+1)"H"_2"O"`