Все статьи

Подкатегории

Новости

486 статей

О Физтехе

1 подкатегорий

2 статей

Московский политех

2 подкатегорий

1 статей

Разное

16 статей

Статьи , страница 417

  • 2.3 Энергия электрического поля

    Энергия, запасённая в заряженном конденсаторе, может быть вычислена по одной из формул (см. Учебник):

                                                      `W=CU^2//2=QU//2=Q^2//2C`.                                  (2.2.1)

    Рассмотрим плоский конденсатор с площадью пластин `S` и расстоянием между ними `d`. Ёмкость такого конденсатора равна `C=(epsilon_0S)/d`. Придадим формуле (2.3.1) несколько иной – «полевой» – вид, а именно:

    `W=d/(epsilon_0S) (Q^2)/2=(epsilon_0)/2 (Q/(epsilon_0S))^2Sd=(epsilon_0E^2)/2 V=wV`,     (2.2.2)

    где `E` - напряжённость электрического поля между пластинами конденсатора, `V=Sd` - объём области между пластинами конденсатора, занимаемый полем (снаружи конденсатора электрическим полем пренебрегаем). Это наводит на мысль трактовать эту формулу следующим образом: вся энергия сосредоточена именно в поле, причём,

                                                                    `w=(epsilon_0E^2)/2`                                               (2.3.3)

    где `w` - плотность энергии электростатического поля, т. е. количество энергии, приходящееся на единицу объёма пространства, в котором сосредоточено поле.

    Формула (2.3.3) справедлива не только в случае плоского конденсатора, но и в общем случае произвольного неоднородного поля.

  • 3.1 Дипольный момент системы зарядов, поляризация диэлектриков

    Рассмотрим систему произвольного числа зарядов, притом такую, что суммарный алгебраический заряд её равен нулю `sum_iq_i=0`. Пусть система состоит из `N` точечных зарядов произвольной величины `q_i(i=1,2,3,...N)` и пусть в некоторой системе координат каждый из зарядов характеризуется своим радиус-вектором `vecr_i`. По определению электрическим дипольным моментом системы называют вектор

                                                                  `vecp=sum_iq_ivecr_i`.                                       (3.1.1)

    Электрические свойства диэлектриков обусловлены реакцией на внешнее поле не свободных электронов, как в металлах (в диэлектриках свободных электронов чрезвычайно мало), а так называемых связанных электронов - связанных с отдельными диполями молекул диэлектрика. Надо сразу сказать, что молекулы (атомы) разных веществ бывают двух сортов. Первые из них уже без всякого внешнего поля имеют дипольные моменты (например, молекулы воды); такие молекулы называют полярными, а вместе с ними и сами диэлектрики называют полярными. У другого сорта диэлектриков дипольный момент молекул в отсутствие внешнего поля равен нулю (например, в симметричных молекулах `"O"_2`, `"N"_2`, `"CO"_2`); такие молекулы называют неполярными; соответственно и диэлектрики, состоящие из таких молекул называют неполярными.

    В отсутствие внешнего электрического поля даже вещества с полярными молекулами, как правило, никак себя электрически не проявляют. Это связано с тем, что диполи различных молекул в них направлены совершенно хаотически и, «действуя не согласованно», не создают никакого суммарного макроскопического электрического поля.

    При помещении во внешнее электрическое поле (везде далее будем считать это поле однородным) вещества двух указанных сортов ведут себя в чём-то по-разному, но в чём-то и схоже. В полярных диэлектриках в расположении (ориентации) диполей появляется упорядоченность - диполи молекул стремятся выстроиться преимущественно по полю.

    В неполярных диэлектриках электронные облака молекул деформируются так, что у них появляются индивидуальные дипольные моменты, которые также стремятся выстроиться преимущественно по полю - говорят, что происходит поляризация диэлектриков. В результате в обоих случаях на границах диэлектрика появляются, как и в металлах, избыточные поверхностные заряды той же полярности, что и в металлах. Наведённое ими электрическое поле `E^'` также направлено на встречу  внешнему  полю  `E_0`,  а суммарное  поле `E=E_0-E^'` меньше внешнего  (рис. 15). В проводниках в статических условиях  это поле не просто меньше внешнего, но в точности равно нулю. В диэлектриках оно до нуля  не ослабляется, оставаясь конечным и равным `E=E_0//epsilon`. Где `epsilon` - так  называемая  диэлектрическая  проницаемость  среды,  показывающая во сколько раз диэлектрик ослабляет внешнее электрическое поле.

    Замечание

    Простое ослабление внешнего поля в диэлектрике в `epsilon` раз относится лишь к простейшей геометрии опыта, когда внешнее электрическое поле перпендикулярно поверхности диэлектрика. Рассмотрение случаев, когда поле направлено под другими углами к поверхности, выходит за рамки настоящего Задания.

    Какие порядки величин `epsilon` встречаются? Для воздуха (и вообще, для газов, т. е. довольно разреженных систем с неполярными молекулами) эта величина лишь ненамного превосходит единицу: `epsilon~~1,00058`. А вот для воды эта  величина значительно больше: `epsilon~~81`. Последнее связано с тем, что, во-первых, молекулы воды `"H"_2"O"` суть полярные молекулы (электроны в них смещены от атомов водорода к атому кислороду), а во-вторых, концентрация молекул в воде значительно больше, чем в воздухе.

    Пример 25

    Заряды `+q,+q,-q` и `-q` расположены последовательно в вершинах квадрата, если обходить его по часовой стрелке. Сторона квадрата равна `l`. Определить дипольный момент системы.  

    Решение

    Рассмотрим две пары разноимённо заряженных зарядов (рис. 16). В каждой паре дипольный момент будет равен по модулю величине `ql`, и для разных пар дипольные моменты направлены в  одну и ту же сторону, поэтому их сумма равна  `2ql`.

    Пример 26

    Металлический шар радиусом `R` с  зарядом `Q` находится  в среде с  диэлектрической проницаемостью `epsilon`. Определить суммарный заряд `Q^'` связанных зарядов на поверхности шара.

    Решение

    Ослабление в `epsilon` раз поля шара с зарядом `Q` обусловлено тем, что не его поверхности появляется заряд  `Q^'`: `1/(epsilon) Q/(4pi epsilon_0r^2)=(Q+Q^')/(4pi epsilon_0r^2)`, откуда `Q^'=-(epsilon-1)/(epsilon)Q`.


  • 3.2 Конденсатор с диэлектрической прослойкой

    Ёмкость конденсатора с диэлектриком всегда больше, чем без него. Причина состоит в том, что диэлектрик ослабляет поле. Рассмотрим сначала плоский конденсатор с воздушным промежутком между пластинами (для воздуха `epsilon~~1`).  Поместим на одну из обкладок заряд `Q`, а на другую обкладку заряд `-Q`. Если площадь пластин равна `S`, то между пластинами будет существовать электрическое поле `E_0=sigma//epsilon_0=Q//(Sepsilon_0)`, а между пластинами будет существовать разность потенциалов  `U_0=E_0d=Qd//(Sepsilon_0)`.  Ёмкость конденсатора есть `C_0=Q//U=epsilon_0S//d`. Не изменяя зарядов на пластинах, заполним теперь промежуток между обкладками конденсатора диэлектриком с диэлектрической проницаемостью `epsilon`. В результате напряжённость электрического поля уменьшится в `epsilon` раз, `E=E_0//epsilon`; как следствие, в `epsilon` раз уменьшится напряжение между пластинами `U=U_0//epsilon` - и в `epsilon` же  раз  увеличится ёмкость  `C=Q//U=epsilon C_0`, т. е.

                                                                        `C=(epsilon epsilon_0S)/d`.                                 (3.2.1)

    В веществах, которые часто используются в конденсаторах, диэлектрические проницаемости таковы: для парафина `epsilon~~2`, а для слюды `epsilon~~7,5`. В современных конденсаторах часто используют диэлектрические слои из титаната бария `("TiBaO"_3)` с добавлением небольшого количества других окислов. Обычно это – керамики, получаемые из тонкодисперсного порошка, размеры частиц которого порядка микрона (`10^(-6)` м). Толщины диэлектрических слоёв в таких конденсаторах порядка `10` мкм, а `epsilon` порядка нескольких тысяч (до `20000`). В другом типе конденсаторов, так называемых электролитических конденсаторах толщины диэлектрических слоёв можно сделать в сотни раз меньше, чем в керамических конденсаторах, правда,  изоляционные  материалы, используемые в них, имеют меньшую,  чем в керамических конденсаторах, диэлектрическую проницаемость  `epsilon` - от `8` до `27`.

    Пример 27

    Оценить, какого размера должны быть пластины плоского конденсатора в форме квадратов, расстояние между которыми `d=10` мкм, с диэлектрической прослойкой на основе титаната бария, чтобы его электроёмкость равнялась:  а) `1` Ф, б) `1` мФ, в) `1` мкФ? Диэлектрическая прослойка на основе титаната бария `("TiBaO"_3)` имеет  `epsilon=20000`.

    Решение

    По формуле (3.2.1) `C=(epsilon epsilon_0L^2)/d`:   

    а) `l~~7,5` м,    

    б) `L~~23` см, 

    в) `L~~7,5` мм.

    В конденсаторе без диэлектрика (когда `epsilon=1`) эти размеры равнялись бы, соответственно,

    а) больше `1` км,

    б) `~~33` м,

    в) больше `1` м.

    Пример 28

    Как изменится электроёмкость плоского конденсатора с воздушным зазором между пластинами площади `S` каждая и с расстоянием между пластинами `d`, если между обкладками конденсатора вставить параллельно обкладкам диэлектрическую пластинку толщиной `delta<d` с диэлектрической проницаемостью `epsilon`?  Зависит ли результат от того, в какое именно место между обкладками конденсатора вставить пластинку? Рассмотреть предельный случай `epsilon ->oo`  и сравнить его с Примером 24.

    Решение

    Решение аналогично Примеру 24, только теперь внутри пластинки поле не равно нулю, а равно `E^'=E//epsilon`.  Поэтому с пластинкой:  `C^'=Q/U^'=Q/(E(d-delta)+E/epsilon delta)`;

    в итоге `C^'=(epsilon_0S)/(d-(1-1/epsilon)delta)` (`**`), причём результат  не  зависит  от   месторасположения   пластинки.   Без   пластинки `C=epsilon_0S//d<C^'`. В предельном случае `epsilon->oo` формула (`**`) для  `C^'` переходит в формулу для `C^'`  Примера 24.

  • ЛИТЕРАТУРА

    1. Мякишев Г.Я, Буховцев Б.Б., Сотский Н.Н. ФИЗИКА: учебник для 10 кл. общеобразовательных учреждений: базовый и профильный уровень. – 16 изд. – М.: Просвещение, 2007. – 336 с.

    2. Бутиков Е.И., Кондратьев А.С. ФИЗИКА: Учеб. Пособие: в 3 кн. Кн. 3. Электродинамика. Оптика. – М.: ФИЗМАТЛИТ, 2001. – 336 с.

    3. Павленко Ю.Г. Начала физики: Учебник. – 2-е изд. – М.: 2005. –864 с.

  • §1. Электрический ток и сила тока
    Просмотр текста ограничен правами статьи
  • §2. Электрическое сопротивление среды и закон Ома
    Просмотр текста ограничен правами статьи
  • §3. Элементы электрических цепей
    Просмотр текста ограничен правами статьи
  • §4. Последовательное и параллельное соединения
    Просмотр текста ограничен правами статьи
  • §5. Источники постоянного тока
    Просмотр текста ограничен правами статьи
  • §6. Правила Кирхгофа
    Просмотр текста ограничен правами статьи
  • §7. Энергия и мощность в электрических цепях
    Просмотр текста ограничен правами статьи
  • §1. Магнитное поле
    Просмотр текста ограничен правами статьи
  • §2. Закон Био – Савара – Лапласа
    Просмотр текста ограничен правами статьи
  • §3. Закон Ампера
    Просмотр текста ограничен правами статьи
  • §4. Сила Лоренца
    Просмотр текста ограничен правами статьи
  • 1. Нитросоединения
    Просмотр текста ограничен правами статьи
  • 2. Амины
    Просмотр текста ограничен правами статьи
  • 3. Анилин
    Просмотр текста ограничен правами статьи
  • Список рекомендованной литературы
    Просмотр текста ограничен правами статьи
  • 4. Аминокислоты
    Просмотр текста ограничен правами статьи