Все статьи

Подкатегории

Новости

492 статей

О Физтехе

1 подкатегорий

2 статей

Московский политех

2 подкатегорий

1 статей

Разное

16 статей

Статьи , страница 427

  • §3. Неравенства с модулем

    Простейшие неравенства решаются с помощью свойств модуля. 

    Пример 5

    Решите неравенство:  

    а) `|x-2|>=-1`;  

    б) `|x-4|<-2`;

    в) `|1-x|<=4`;  

    г) `|3+x|>5`. 

    Решение

    а) `|x-2|>=0>-1` - верно для всех `x`.

    Ответ
    `x` - любое число.


    б)  Решений нет, т. к. `|x-4|>=0` для всех `x`.   

    Ответ
    нет решений.


    в) Воспользуемся    снова    свойством   $$ {10}^{○}$$ (см. § 1). Тогда условие звучит так: расстояние от точки `x` до точки `1` не превосходит `4`. То есть, мы ищем все точки прямой, удалённые от точки `1` на расстояние, не большее `4` (см. рис. 7).

    Запишем решение так:

    `|1-x|<=4 iff -4<=1-x<=4 iff -3<=x<=5`.


    Ответ
    `x in [-3;5]`.


    г) `|x+3|=|x-(-3)|`. Поэтому `|x+3|` - это расстояние между точками  и (`–3`). Ищем все точки на прямой, удалённые от точки (`–3`) на расстояние, большее `5` (см. рис. 8).

    Запишем решение:

    $$\left|3+x\right|>5\Leftrightarrow\left[\begin{array}{l}3+x>5,\\3+x<-5\end{array}\right.\Leftrightarrow\left[\begin{array}{l}x>2,\\x<-8.\end{array}\right.$$

    Ответ

    `x in (-oo;-8)uu(2;oo)`.

    При решении неравенств, содержащих знак модуля, часто бывают полезны следующие равносильные переходы.

    Свойства

    $$ {12}^{○}$$. `|f(x)|>|g(x)| iff f^2(x)>g^2(x)`.

    $$ {13}^{○}$$. $$\left|f\left(x\right)\right|>g\left(x\right)\Leftrightarrow\left[\begin{array}{l}f\left(x\right)>g\left(x\right),\\f\left(x\right)<-g\left(x\right).\end{array}\right.$$


    $$ {14}^{○}$$.  $$\left|f\left(x\right)\right|< g\left(x\right)\Leftrightarrow\left\{\begin{array}{l}f\left(x\right)< g\left(x\right),\\f\left(x\right)>-g\left(x\right).\end{array}\right.$$


    Докажем некоторые из них.

    Доказательство

    $$ {12}^{○}$$. Если обе части неравенства неотрицательны, то его можно возвести в квадрат. Таким образом, `|f(x)|>|g(x)| iff f^2(x)>g^2(x)`. Докажем в обратную сторону:

    `f^2(x)>g^2(x) iff |f(x)|^2-|g(x)|^2>0 iff`

    `iff (|f(x)|-|g(x)|)*(|f(x)|+(g(x)|)>0`. 

    Последнее условие означает, что числа `|f(x)|+|g(x)|` и `|f(x)|-|g(x)|` имеют один знак; `|f(x)|+|g(x)|` не может быть отрицательным, поэтому оба числа должны быть положительны `=> |f(x)|-|g(x)|>0=> |f(x)|>|g(x)|`. Утверждение доказано.

    Доказательство

    $$ {14}^{○}$$. Рассмотрим 2 случая.  

    (1)  `g(x)<=0`. Тогда неравенство `|f(x)|<g(x)` не имеет решений;

    не имеет решений и система, так как $$\left\{\begin{array}{l}f\left(x\right)< g\left(x\right)\leq0,\\f\left(x\right)>-g\left(x\right)\geq0,\end{array}\right.$$ откуда следует, что `f(x)>0` и `f(x)<0`, что невозможно. Значит, если `g(x)<=0`, система и неравенство равносильны.

    (2) `g(x)>0`. Тогда наше утверждение сводится к простейшему неравенству с модулем:

    `|t|<a iff -a<t<a`.

    Аналогично, `|f(x)|<g(x) iff -g(x)<f(x)<g(x)`.

    Пример 6

    Решите неравенство:

    а) `|2x^2-3x+1|<=3x-2x^2-1`;

    б) `|3x-7|>=|1-4x|`;

    в) `||x^2-8x+2|-x^2|>=2x+2`.

    Решение

    а) `|2x^2-3x-1|<=3x-2x^2-1 iff`

    `iff |2x^2-3x+1|<=-(2x^2-3x+1) iff^**` 

    `iff 2x^2-3x+1<=0 iff (2x-1)(x-1)<=0 iff`

    `iff 1/2 <=x<=1`.

                                              
    `**` (т. к. `|a|<=-a iff a<=0`).
    Ответ

    `[1/2;1]`.


    б) $$ \left|3x-7\right|\ge \left|1-4x\right|\stackrel{{12}^{○}}{\iff }{\left(3x-7\right)}^{2}\ge {\left(1-4x\right)}^{2}\iff $$

    `iff (3-7)^2-(1-4x)^2>=0 iff`

    `iff (3x-7-1+4x)(3x-7+1-4x)>=0 iff`

    `iff (7x-8)(-6-x)>=0 iff -6<=x<=8/7`.

    Ответ

    `[-6;8/7]`.


    в) $$ \left|\left|{x}^{2}-8x+2\right|-{x}^{2}\right|\ge 2x+2\stackrel{{13}^{○}}{\iff }\left[\begin{array}{l}\left|{x}^{2}-8x+2\right|-{x}^{2}\ge 2x+2\\ \left|{x}^{2}-8x+2\right|-{x}^{2}\le -2x-2\end{array}\right.\iff $$

    $$ \left[\begin{array}{l}\left|{x}^{2}-8x+2\right|\ge {x}^{2}+2x+2,\\ \left|{x}^{2}-8x+2\right|\le {x}^{2}-2x-2\end{array}\right.\stackrel{{13}^{○},{14}^{○}}{\iff }$$

    $$ \stackrel{{13}^{○},{14}^{○}}{\iff }\left[\begin{array}{l}\left[\begin{array}{l}{x}^{2}-8x+2\ge {x}^{2}+2x+2,\\ {x}^{2}-8x+2\le -{x}^{2}-2x-2,\end{array}\right.\\ \left\{\begin{array}{l}{x}^{2}-8x+2\le {x}^{2}-2x-2,\\ {x}^{2}-8x+2\ge -{x}^{2}+2x+2\end{array}\right.\end{array}\right.\iff $$

    $$\iff \left[\begin{array}{l}x\le 0,\\ {x}^{2}-3x+2\le 0,\\ \left\{\begin{array}{l}6x\ge 4,\\ {x}^{2}-5x\ge 0\end{array}\right.\end{array}\right.\iff  \left[\begin{array}{l}x\le 0,\\ 1\le x\le 2\\ \left\{\begin{array}{l}x\ge 2/3,\\ \left[\begin{array}{l}x\ge 5,\\ x\le 0.\end{array}\right.\end{array}\right.\end{array}\right.\iff$$

    $$ \iff\left[\begin{array}{l}x\le 0,\\ 1\le x\le 2,\\ x\ge 5.\end{array}\right.$$


    Ответ

    `x in (-oo;0]uu[1;2]uu[5;+oo)`.

    В некоторых случаях применение выше рассмотренных свойств нецелесообразно, и проще раскрыть модули по определению (рассмотрев знаки выражений под модулями).

    Пример 7

    Решите неравенство `6|x^2-3x-4|+1>5|x+5|`.

    Решение

    Решение проводится по той же схеме, что и в  примере 2. Отмечаем на числовой прямой точки `x=4`, `x=-1` и `x=-5`, в которых подмодульные выражения равны нулю (рис. 9).

    а) `x<=-5`. Здесь  `x^2-3x-4>0`, `x+5<=0`, поэтому получаем   

    `6x^2-18x-24+1> -5x-25 iff 6x^2-13x+2>0 iff`

    `iff (x-2)(6x-1)>0 iff x in (-oo;1/6)uu(2;+oo)`.

    С учётом ограничения `x<= -5 : x in (-oo;-5]`.

    б) `x in (-5;-1]uu(4;+oo)`. На этих двух промежутках  `x^2-3x-4>=0`, `x+5>0`, поэтому получаем `6(x^2-3x-4)+1>5(x+5) iff 6x^2-23x-48>0 iff`

    `iff (3x-16)(2x+3)>0 iff x in (-oo;-3/2)uu(16/3;+oo)`.

    Учитывая рассматриваемые значения переменной, получаем  

    `x in (-5;-3/2)uu(16/3;+oo)`.

    в) `x in (-1;4]`. Тогда `x^2-3x-4<=0`, `x+5>0`  и неравенство принимает вид 

    `-6(x^2-3x-4)+1>5(x+5) iff 6x^2-13x<0 iff`

    `iff 6x(x-13/6)<0 iff 0<x<13/6`.

    Объединяя результаты, получаем

    `x in (-oo;-3/2)uu(0;13/6)uu(16/3;+oo)`.

    Ответ

    `x in (-oo;-3/2)uu(0;13/6)uu(16/3;+oo)`.

  • §4. Построение графиков функций

    График квадратичной функции  `y=ax^2+bx+c` (где `a!=0`) - парабола. Абсцисса вершины этой параболы задаётся формулой `x_B=-b/(2a)`. Если `a>0`, то ветви параболы направлены вверх, если `a<0` - вниз.

    Если дискриминант квадратного трёхчлена положителен, то парабола пересекает ось абсцисс в двух точках (абсциссы этих точек - корни квадратного уравнения `ax^2+bx+c=0`); если дискриминант меньше нуля - то не имеет с осью абсцисс ни одной общей точки; если равен нулю - парабола имеет с осью абсцисс ровно одну общую точку (в этом случае говорят, что парабола касается оси абсцисс). В последнем случае квадратный трёхчлен имеет вид `a(x-x_0)^2`.

    Пример 8

    Постройте график функции `y=-2x^2+8x-5`.

    Решение

    Выделим полный квадрат:

    `y=-2x^2+8x-5=-2(x^2-4x)-5=`

    `=-2(x^2-4x+4-4)-5=-2(x-2)^2+8-5=` 

    `=-2(x-2)^2+3`.

    График функции `y=-2(x-2)^2+3` - парабола, полученная из параболы `y=2x^2` с помощью симметрии относительно оси абсцисс, затем параллельного переноса на `2` единицы вправо вдоль оси абсцисс и, наконец, параллельного переноса на `3` единицы вверх вдоль оси ординат (см. рис. 10).

    При помощи построения графика квадратичной функции можно решать квадратные неравенства.

    Пример 9

    Решите неравенство:

    а) `x^2-x-2>0`;

    б) `4x^2+4x+1<=0`;

    в) `3x^2-2x+1>0`.

    Решение

    а) График квадратного трёхчлена `y=x^2-x-2` - парабола, её ветви направлены вверх (коэффициент при `x^2` положителен), абсциссы точек пересечения с осью `Ox:` `x_1=-1`, `x_2=2`  (корни квадратного уравнения `x^2-x-2=0`). Все точки оси абсцисс, для которых парабола находится выше этой оси (т. е. решения данного неравенства), расположены вне промежутка между корнями `x_1` и `x_2`. Значит, множество решений данного неравенства - объединение открытых лучей:

    `(-oo;-1)uu(2;+oo)`.

    Ответ

    `x in (-oo;-1)uu(2;+oo)`.

    б) `4x^2+4x+1<=0 iff (2x+1)^2<=0 iff 2x+1=0 iff x=-0,5`.

    Ответ

    `x=-0,5`.

    в) График квадратного трёхчлена `y=3x^2-2x+1` - парабола, её ветви направлены вверх (коэффициент при `x^2` положителен), она не пересекает ось абсцисс, т. к. уравнение `3x^2-2x+1=0` не имеет решений (его дискриминант отрицателен). Поэтому все точки параболы расположены выше оси `Ox`. Следовательно, данное неравенство истинно для всех `x`.


    Ответ

    `x in RR`.

    Заметим, что эти неравенства могли быть решены также  с помощью метода интервалов, изложенного выше (см. §2).

    Пример 10

    Парабола `y=2016x^2-1941x-76` - пересекает ось абсцисс в точках `x_1` и `x_2`. Определите, где на этой прямой расположены точки `1`; `–1`; `–5` (т. е. вне промежутка между `x_1` и `x_2` или внутри него?).

    Решение

    Так как  `a>0` и `c<0`, то `D>0` и данное уравнение имеет корни.

    График функции `f(x)=2016x^2-1941x-76` - это парабола, ветви которой направлены вверх. Видно, что точка лежит в промежутке между корнями тогда и только тогда, когда `f(x)<0` и вне этого промежутка, если `f(x)>0` (см. рис. 11).

    `f(1)=-1<0=>1 in (x_1;x_2)`;

    `f(-1)=2016+1941-76>0=>1!in (x_1;x_2)`;

    `f(-5)=2016*25+1941*5-76>0=>5!in (x_1;x_2)`.

    Пример 11

    Определите знаки коэффициентов квадратного трёхчлена `y=ax^2+bx+c`, график которого изображён на рис. 12.

    Решение

    1) Заметим, что `y(0)=c`, откуда `c>0`.

    2) Ветви параболы направлены вниз `=>a<0`.

    3) Ось симметрии параболы - это прямая `x_B=-b/(2a)`, по рисунку видно, что `-b/(2a)>0`, откуда `b>0`.                  

    Ответ

    `a<0`, `b>0`, `c>0`.

    Пример 12

    Найти все значения `l`, при которых неравенство 

    `lx^2-2(l-6)x+3(l-2)<0`

    верно для всех значений `x`.

    Решение

    Коэффициент при `x^2` зависит от `l` и равен `0` при `l= 0`. В этом случае данное неравенство не квадратное, а линейное: `12x-6<0`. Это неравенство неверно, например, при `x=1`, значит, при `l=0` данное неравенство не является верным для всех значений `x`.

    Рассмотрим значения `l!=0`. Для них данное неравенство квадратное. Видно, что все числа являются его решениями только в одном случае: во-первых, если  старший коэффициент отрицателен, (т. е. ветви параболы направлены вниз), и во-вторых, если дискриминант отрицателен, (т. е. парабола не пересекает ось абсцисс).

    Получаем систему неравенств

    $$\left\{\begin{array}{l}l<0,\\\frac D4=\left(l-6\right)^2-3l\left(l-2\right)<0\end{array}\right.\Leftrightarrow\left\{\begin{array}{l}l<0,\\-2l^2-6l+36<0\end{array}\right.\Leftrightarrow$$

    $$\Leftrightarrow\left\{\begin{array}{l}l<0,\\\left(-2l+6\right)\left(l+6\right)<0\end{array}\right.\Leftrightarrow\left\{\begin{array}{l}l<0,\\l\in\left(-\infty;-6\right)\cup\left(3;+\infty\right)\end{array}\right.\Leftrightarrow l<-6.$$

    Ответ
    `l< -6`.


    Перейдём к графикам, содержащим знак модуля.

    Пример 13

    Постройте график функции: 

    а) `y=|x+3|`;

    б) `y=4-|x|`;

    в) `y=|4-2x|-1`;

    г) `y=2|x+4|+|x-3|+2x-3|x+1|`;

    д) `y=|||x|-3|-1|`.

    Решение

    а) Рассмотрим графики функций `f(x)=|x|`  и  `g(x)=|x+3|`. Заметим, что при  подстановке значения `x_0` в функцию `f(x)` и значения `(x_0-3)` в функцию `g(x)` получается одно и то же число.  Это означает, что если графику функции `y=f(x)`  принадлежит точка с координатами `A(x_0;|x_0|)`, то графику функции `y=g(x)` принадлежит точка `B(x_0-3;|x_0|)`,  расположенная на `3` единицы слева от точки `A`.      

    Таким образом, график функции `g(x)` получается из графика функции `f(x)` сдвигом на `3` единицы влево (рис. 13).                 

    б) Рассмотрим   функции  `f(x)=-|x|` и `g(x)=4-|x|`. При любом `x` значение  функции `g(x)` на `4` больше, чем значение функции `f(x)`, а это означает, что график функции `g(x)` получается из графика функции `f(x)` сдвигом на `4` единицы вверх  (рис. 14).

    в)  `y=|4-2x|-1=|2x-4|-1=2|x-2|-1`.              

    Построим сначала график функции `y=|x|` (рис. 15а).

    График функции `y=2|x|` получается   из  него  «растяжением» в два раза  (рис. 15б); график  `y=2|x-2|` получается  из  предыдущего сдвигом на `2` единицы вправо   (рис. 15в);

      график `y=2|x-2|-1` получается из  последнего сдвигом на единицу вниз (рис. 15г).       

    вывод

    График функции `y=af(x-b)+c` получается из графика функции `y=f(x)` следующим образом.                        

    1) Проводится «растяжение» в `|a|` раз; при этом если `a<0`, то график функции отражается  относительно   оси   абсцисс.                                                             

    2) График сдвигается на `|b|` влево (если `b<0`) или на `|b|` вправо (`b>0`).                     

    3) График сдвигается на `|c|` вверх  при `c>0` и на `|c|` вниз при `c<0`.                                       

    г) Отметим на числовой прямой точки, в которых выражения, стоящие под знаком модуля, обращаются в ноль (рис. 16а). Эти три точки делят числовую прямую на четыре части, причём  на  каждой  из  частей  знаки выражений,  стоящих под модулями, не меняются.                     

    Возможны 4 случая.

    1) `ul(x<=-4)`.  Тогда  `x+4<=0`, `x-3<0`, `x+1<0`, поэтому

    `y=2*(-x-4)-(x-3)+2x+3(x+1)=2x-2`.

    Получаем луч (часть прямой `y=2x-2`, лежащую слева от прямой `x=-4`).

    2)  `ul(-4<x<=-1)`. Тогда `x+4>0`, `x-3<0`, `x+1<=0`, поэтому   

    `y=2(x+4)-(x-3)+2x+3(x+1)=6x+14`.                        

    Получаем отрезок (часть прямой `y=6x+14`, лежащая между прямыми  `x=-4` и `x=-1`).

    3)  `ul(-1<x<=3)`. Тогда `x+4>0`, `x-3<=0`, `x+1>0`, поэтому

    `y=2(x+4)-(x-3)+2x-3(x+1)=8`. 

    Получаем отрезок (часть прямой `y=8`, заключённая между прямыми `x=-1` и `x=3`).

    4) `ul(x>3)`.  Тогда `x+4>0`, `x-3>0`, `x+1>0`, поэтому

    `y=2(x+4)+(x-3)+2x-3(x+1)=2x+2`.                                        

         Получаем луч (часть прямой `y=2x+2`, находящуюся справа от прямой  `x=3`). График см. на рис. 16б.

    Укажем второй способ построения. На каждом из четырёх участков `(-oo;-4]`, `[-4;-1]`, `[-1;3]`, `[3;+oo)` после раскрытия модулей получим линейную функцию, графиком которой является прямая. Чтобы построить прямую, достаточно знать две её точки. Отсюда вытекает следующий способ построения. Вычислим значения   функции   в  точках `x=-4`, `x=-1` и `x=3`, а также в каких-либо точках, лежащих на промежутках `(-oo;-4)` и `(3;+oo)`, например, `x=-5` и `x=4`. Получаем пять точек, принадлежащих графику:

    `A(-4;-10)`, `B(-1;8)`, `C(3;8)`, `D(-5;-12)`, `E(4;10)`.

    Проводим отрезки `AB` и `BC`, лучи `AD` и `CE` и получаем график.                                      

    д) Построим сначала график функции `f_1(x)=|x|-3` (рис. 17а).       

     

    График `f_2(x)=||x|-3|` получается из графика функции `f_1(x)` так: точки, лежащие выше оси `Ox` и на оси `Ox` сохраняются, а  все точки, лежащие ниже оси `Ox`, отражаются относительно оси `Ox` в  верхнюю полуплоскость (рис. 17б). Действительно, если `f_1(x)>=0`, то `f_2(x)=|f_1(x)|=f_1(x)`, а если `f_1(x)<0`, то `f_2(x)=|f_1(x)|=-f_1(x)`. Таким  образом, если при некотором `x` оказалось, что `f_1(x)>=0`, то точки на графике  для `f_1(x)` и `f_2(x)` совпадают.  Если же `f_1(x)<0`, то для `y=f_2(x)` абсцисса точки не поменяется, а ордината сменит знак.  График  функции `f_3(x)=||x|-3|-1` получается из графика функции `f_2(x)` сдвигом на единицу вниз (рис. 17в).

           
    График  функции `f_4(x)=|||x|-3|-1|` получается из `f_3(x)` отражением всех  точек,  лежащих  ниже оси `Ox`, относительно оси `Ox` наверх (рис. 17 г).

    вывод

    График функции `y=|f(x)|` получается  из  графика  функции `y=f(x)` следующим образом. Все точки, лежащие  выше оси `Ox` и на оси `Ox`, сохраняются, а все точки, лежащие ниже оси `Ox`, отражаются относительно оси `Ox` и попадают  в  верхнюю  полуплоскость.                           

    Пример14

    Постройте график функции:

    а) `y=x^2-4x+3`,

    б) `y=|x^2-4x+3|`,

    в) `y=x^2-4|x|+3`,

    г) `y=|x^2-4|x|+3|`.

    Решение

    а) `x^2-4x+3=x^2-4x+4-1=(x-2)^2-1`.

    График функции `y=x^2-4x+3` получается из графика функции `y=x^2` сдвигом на `2` вправо и на `1` вниз (рис. 18а).

     

    б) Отразим все точки графика пункта а), лежащие ниже  оси  абсцисс,  относительно  этой  оси  (рис. 18б).      

    в) Заметим, что функция `f(x)=x^2-4|x|+3` чётная (т. е. удовлетворяет условию `f(-x)=f(x)`),  поэтому  её график симметричен относительно оси ординат. Кроме того, при `x>=0` этот  график совпадает с графиком функции `f(x)=x^2-4x+3`.

    Отсюда вытекает следующий способ построения. От графика функции `y=x^2-4x+3` оставим точки, лежащие справа от оси `Oy`, отразим их симметрично относительно  этой оси,  а точки, лежащие слева от оси `Oy`, отбросим (рис. 18в).    

    вывод

    График функции `y=f(|x|)` получается  из  графика  функции `y=f(x)` следующим образом.  Отбрасываем  все точки, лежащие слева от оси `Oy`, а оставшиеся точки отражаем относительно оси `Oy`.

    г) Есть 2 способа построения.                    

    (1) Все точки графика из пункта (в), лежащие ниже оси абсцисс, отражаем относительно этой оси.                   

    (2) От графика пункта (б) отбрасываем точки, лежащие слева от оси ординат; все точки, находящиеся справа от оси ординат, отражаем относительно неё. Разумеется, в обоих случаях получается одинаковый результат (рис. 18г).

    Теперь рассмотрим график функции `y=(ax+b)/(cx+d)`; при этом считаем, что

    1) `c!=0` - т. к. иначе получится линейная функция – и

    2) коэффициенты в числителе и в знаменателе не пропорциональны друг другу, т. е.  `ad!=bc`. (Если `ad=bc`, то `b=(ad)/c` и получаем 

    `(ax+b)/(cx+d)=(ax+(ad)/c)/(cx+d)=(a/c(cx+d))/(cx+d)=a/c` при `cx+d!=0`). 

    Покажем на примере, как этот график может быть построен.

    Пример 15

    Постройте график функции:

    а) `y=6/(2x+3)`;

    б) `y=(6-3x)/(2x+1)`.

    Решение

    а) `y=3/(x+3//2)`. Это график получается из гиперболы `y=3/x` параллельным переносом на `3/2` влево (см. рис. 19). Асимптотами этой гиперболы являются прямые `x=-3/2` и `y=0`. (У каждой гиперболы есть две асимптоты. Горизонтальная асимптота `y=bbb"const"` - это та прямая, к которой график приближается при `x`, стремящемся к бесконечности. Вертикальная асимптота `x=bbb"const"` возникает при том значении `x`, где знаменатель дроби обращается в ноль. При `x`, приближающемся к данной точке, функция стремится к бесконечности).

    б) Отношение коэффициентов при `x` в числителе и знаменателе дроби равно `(-3/2)`.

    Преобразуем данную дробь, добавляя и вычитая `(-3/2)`:

    `y=-3/2+((6-3x)/(2x+1)+3/2)`.

    Дроби в скобках приводим к общему знаменателю:

    `y=-3/2+(12-6x+6x+3)/(2(2x+1)) iff y=-3/2+15/(4x+2) iff`

    `iff y=-3/2+(15//4)/(x+1//2)`.

    Этот график получается из графика `y=(15//4)/x` параллельным переносом на `3/2` вниз и на `1/2` влево (рис. 20).



  • §1. Правило произведения
    Просмотр текста ограничен правами статьи
  • §2. Размещения и перестановки
    Просмотр текста ограничен правами статьи
  • §3. Сочетания
    Просмотр текста ограничен правами статьи
  • §4. Правило суммы
    Просмотр текста ограничен правами статьи
  • §5. Формула включений и исключений
    Просмотр текста ограничен правами статьи
  • §6. Треугольник Паскаля
    Просмотр текста ограничен правами статьи
  • §7. Бином Ньютона
    Просмотр текста ограничен правами статьи
  • §8. Понятие случайного события. Вероятность
    Просмотр текста ограничен правами статьи
  • Литература
    Просмотр текста ограничен правами статьи
  • §1. Свойства касательных, хорд и секущих
    Просмотр текста ограничен правами статьи
  • § 2. Площадь треугольника
    Просмотр текста ограничен правами статьи
  • §3. Площадь четырёхугольника
    Просмотр текста ограничен правами статьи
  • §1. Иррациональные уравнения
    Просмотр текста ограничен правами статьи
  • 1. Системы линейных уравнений
    Просмотр текста ограничен правами статьи
  • 2. Нелинейные системы уравнений
    Просмотр текста ограничен правами статьи
  • 3. Системы, сводящиеся к решению однородного уравнения
    Просмотр текста ограничен правами статьи
  • 4. Симметрические системы
    Просмотр текста ограничен правами статьи
  • §1. Множество. Подмножество. Равенство множеств. Числовые множества и множества точек
    Просмотр текста ограничен правами статьи