16 статей
На поверхности твёрдого тела, погружённого в жидкость (газ), действуют силы давления.
Иррациональными называют неравенства, в которых переменные входят под знаком корня. Так как корень чётной степени существует только у неотрицательных чисел, то при решении неравенств, содержащих такое выражение, прежде всего удобно найти ОДЗ.
Решите неравенство `sqrt(x + 3) > x + 1`.
Это неравенство можно решить несколькими способами. Решим его графически (рис. 1). Построим графики функций `y = sqrt(x + 3)`, `y = x + 1` и посмотрим, где первый график расположен выше второго. Для нахождения решения останется решить только уравнение `sqrt(x + 3) = x + 1` (и не надо рассматривать случаи разных знаков для `x + 1`!).
`[- 3; 1)`.
Сначала приведём уже выведенные в 10-ом классе условия равносильности для уравнений (в частности, для того, чтобы была понятна приве-дённая уже здесь нумерация условий равносильности для корней `(`УР К`)`):
`sqrt(f(x)) = a^2 iff f(x) = a^4`. | (УР К1) |
(УР К2) | |
(УР К3) | |
(УР К4) |
ПУНКТ 1. НЕРАВЕНСТВА ВИДА `sqrt(f(x)) >= g(x)` и `sqrt(f(x)) <= g(x)`
ОДЗ: `f(x) >= 0`.
Рассмотрим неравенство `sqrt(f(x)) >= g(x)`. Докажем, что
(УР К5) |
1. Если является решением неравенства `sqrt(f(x)) >= g(x)`, то `f(x) >= 0` и `sqrt(f(x))` существует. При этом неравенство заведомо выполнено при `g(x) < 0`. Если же `g(x) >= 0`, то возведение в квадрат обеих частей неравенства приводит к равносильному неравенству `f^2 (x) >= g^2 (x)`.
2. Пусть теперь `x` является решением совокупности неравенств
Тогда:
а) если `g(x) < 0` и `f(x) >= 0`, то существует `sqrt(f(x))` и заведомо выполнено неравенство `sqrt(f(x)) >= g(x)`:
б) если `g(x) >= 0` и `f(x) - g^2 (x) >= 0 iff (sqrt(f(x)) - g(x)) (sqrt(f(x)) + g(x)) >= 0`,
то `f(x) - g^2 (x) >= 0 iff sqrt(f(x)) - g(x) >= 0`.
Можно ОДЗ неравенства найти отдельно, тогда условие равносильности примет вид:
(УР К6) |
Теперь рассмотрим неравенство вида `sqrt(f(x)) <= g(x)`. Докажем, что
(УР К7) |
Решите неравенство `3 sqrt(3x^2 -8x - 3) > 1 - 2x`.
Первый способ
Воспользуемся (УР К6):
`(- oo ; (34 - 30 sqrt2)/(23)) uu [3; + oo)`.
Второй способ
Можно оформить решение неравенства и несколько по – другому. Найдём сначала ОДЗ:
В нашем задании большую роль будет играть понятие равносильности.
Два неравенства
`f_1 (x) > g_1 (x)` и `f_2 (x) > g_2 (x)` | (1) |
или два уравнения
`f_1 (x) = g_1 (x)` и `f_2 (x) = g_2 (x)` | (2) |
называются равносильными на множестве `X`, если каждое решение первого неравенства (уравнения), принадлежащее множеству `X`, является решением второго и, наоборот, каждое решение второго, принадлежащее `X`, является решением первого, или, если, ни одно из неравенств (уравнений) на `X` не имеет решений. Т. е. два неравенства (уравнения) равносильны, по определению, если множества решений этих неравенств (уравнений) на `X` совпадают.
Отсюда следует, что вместо того, чтобы решать данное неравенство (уравнение), можно решать любое другое, равносильное данному. Замену одного неравенства (уравнения) другим, равносильным данному на `X`, называют равносильным переходом на `X`. Равносильный переход обозначают двойной стрелкой `hArr`. Если уравнение `f(x) = 0` (или неравенство) `f(x) > 0`) равносильно уравнению `g(x) = 0` (или неравенству `g(x) > 0`), то это мы будем обозначать так:
`f(x) = 0 hArr g(x) = 0` (или `f(x) > 0 hArr g(x) > 0`).
`sqrt(x^2 -4) = 1 - x^2 hArr sqrt(sin ^2 x - 2) = 0`, т. к. ни то, ни другое не имеет решения.
Важно понимать, что для доказательства неравносильности двух неравенств (уравнений) нет необходимости решать каждое из неравенств (уравнений), а затем убеждаться в том, что множества их решений не совпадают - достаточно указать одно решение одного из неравенств (уравнений), которое не является решением другого неравенства (уравнения).
При каких значениях параметра `a` системы
и |
равносильны?
Решим сначала первую, более простую систему
Подставим `a = 3` во вторую систему
При `a = 3` системы равносильны, т. к. при этом значении параметра обе системы не имеют решений.
При `a = 3` первая система имеет единственное решение. Заметим, что во второй системе входит только в четной степени, значит, если решением является пара `(x_0, y_0)`, то пара `(x_0 , -y_0)` тоже будет решением. При этом если `y_0 != - y_0 iff y_0 != 0`, то решений будет два. Следовательно, единственным решением может быть только пара `(x_0 , 0)`. Посмотрим, при каких `a` такое решение у системы есть. Подставим эту пару в систему
Итак, таких `a` три: `0, 1, 2`. Но при этих `a` вторая система может иметь и другие решения, а если у неё других решений нет, то её единственное решение может не совпадать с решением первой системы, и тогда такое `a` не удовлетворяет условию задачи. Проверим эти значения параметра.
1. `a=0`: Первая система имеет решение: `x = 4/3` и `y = - 4/3 != 0`. Следовательно, системы не равносильны, т. к. решения систем не совпадают (у второй `y=0`).
2. `a=1`: Вторая система имеет вид
Следовательно, системы не равносильны, т. к. вторая имеет два решения.
3.
и
Следовательно, системы при этом значении равносильны – они имеют единственное решение `(4; 0)`.
`2; 3`.
При решении неравенств и уравнений часто используются следующие равносильные переходы.
1. Если функции `f(x)`, `g(x)`, `h(x)` определены на множестве `X` , то на этом множестве
а) | `f(x) < g(x) iff f(x) + h(x) < g(x) + h(x)`. | (УР 1) |
б) | `f(x) = g(x) iff f(x) + h(x) = g(x) + h(x)`. | (УР 2) |
2. Если `h(x) > 0` на `X`, то на `X`
`f(x) < g(x) iff f(x) h(x) < g(x) h(x)`, | (УР 3) |
т. е. умножение неравенства на положительную функцию приводит к равносильному неравенству с тем же знаком.
3. Если `h(x) < 0` на `X`, то на `X`
`f(x) < g(x) iff f(x) h(x) > g(x) h(x)`, | (УР 4) |
т. е. при умножении неравенства на отрицательную функцию знак неравенства меняется на противоположный.
4. Если `h(x) != 0` на `X`, то на `X`
`f(x) = g(x) iff f(x) h(x) = g(x) h(x)`. | (УР 5) |
5. Если обе части неравенства неотрицательны на `X`, то возведение в квадрат обеих частей приводит к равносильному неравенству, т. е.
`f(x) < g(x) iff f^2 (x) < g^2 (x)`. | (УР 6) |
Если обе части неравенства отрицательны, то умножив обе части на `(–1)`, придём к неравенству противоположного знака, но с положительными частями, и к нему применим `(`УР `6)`.
Если левая и правая части неравенства имеют разные знаки, то возведение в квадрат может привести как к верному, так и к неверному неравенству: `-4<5`; `16<25`; `-7<5`, но `49>25`, поэтому в этом случае нельзя возводить неравенство в квадрат.
6. Если обе части уравнения неотрицательны, то
`f(x) = g(x) iff f^2 (x) = g^2 (x)`. | (УР 7) |
7. Для любых `f(x)` и `g(x)` на `X` и любого натурального `n`
`f(x) = g(x) iff f^(2n + 1) (x) = g^(2n + 1) (x)`. | (УР 8) |
8. Неравенство вида `f(x)>=0(<=0)` называется нестрогим. По определению,
(УР 9) |